Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 242: 116055, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38412792

ABSTRACT

Radix Cudramiae, the dried root of Cudrania cochinchinensis (Lour.) Kudo et Masam., is a valuable ethnomedicine with outstanding antihepatitis activity. However, the lack of reports on quality markers (Q-markers) hindered its quality evaluation and standardization, as a result restricted its clinical application. This paper aimed to discover the Q-markers of Radix Cudramiae with a comprehensive strategy based on in vivo pharmacokinetics and in vitro HPLC fingerprint. A rapid and sensitive ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) analytical method was firstly developed and validated for simultaneous determination of six potential active ingredients (eriodictyol, dihydrokaempferol, dihydromorin, kaempferol, naringenin and morin) of Radix Cudramiae in rat plasma and tissues, which was successfully applied to the holistic comparison of pharmacokinetics and tissue distribution between normal and acute liver injury rats. On the other hand, a representative HPLC fingerprint of Radix Cudramiae was also established to elucidate the chemical profile for overall quality evaluation. Dihydrokaempferol-7-O-ß-D-glucoside (the naturally existed chemical formation of dihydrokaempferol) and kaempferol screened out with high exposure levels in vivo and high resolution in HPLC fingerprint were finally selected as Q-markers of Radix Cudramiae. To the best of our knowledge, it was the first time for people to discover in vivo properties and pharmacokinetic parameters of components in Radix Cudramiae, as well as the first report on its representative HPLC fingerprint. Also, the integrated strategy could offer an effective way for TCMs Q-markers screening.


Subject(s)
Drugs, Chinese Herbal , Liver Diseases , Humans , Rats , Animals , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Kaempferols , Tandem Mass Spectrometry/methods
2.
Int J Phytoremediation ; 26(4): 448-458, 2024.
Article in English | MEDLINE | ID: mdl-37565667

ABSTRACT

Pyrite exhibits considerable potential as an adsorbent in wastewater treatment. However, few pyrite adsorbents are directly obtained from natural pyrite, as most are composite materials that require a complex preparation process. To develop a pyrite-based adsorbent with a simple preparation process, pyrite was processed by calcination at 400, 600, and 800 °C for 4 h and ball-milled into a fine powder. The adsorption properties of the pyrite powder were systematically explored. The calcined pyrite powder was characterized by SEM-EDS and XRD. The results revealed that the pyrite calcined at 600 °C exhibited excellent adsorption properties and was primarily composed of Fe7S8. The optimum conditions for Cr(VI) removal were a temperature of 45 °C, an adsorbent dosage of 1 g, an equilibration time of 60 min, and an initial pH of 3. Moreover, the calcined pyrite powder exhibited excellent reusability, and the Cr(VI) removal rate exceeded 65% after three cycles. The Cr(VI) adsorption on pyrite can be well described by the Freundlich model and pseudo-second-order kinetic equation. The calcination temperature is the main factor affecting the adsorption performance of pyrite. Therefore, the calcined pyrite powder is expected to be an excellent adsorbent for Cr(VI) in the wastewater treatment industry.


Pyrite has shown promising development prospects in the field of wastewater purification. However, the preparation of most pyrite-based adsorbents is complicated. Upon high-temperature calcination, pyrite is used in traditional Chinese medicine clinics to promote the healing of fractures. The efficiency and underlying mechanism of Cr(VI) adsorption from water using calcined pyrite was investigated. The adsorbent was prepared using a simple method and exhibited excellent adsorption performance, thus allowing its application in preparing ore-based adsorbents for water pollution treatment.


Subject(s)
Chromium , Iron , Sulfides , Water Pollutants, Chemical , Powders , Biodegradation, Environmental , Chromium/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
3.
Front Cell Dev Biol ; 9: 647604, 2021.
Article in English | MEDLINE | ID: mdl-34621734

ABSTRACT

Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its prevention and control have been widely studied. Bacteria in the midgut of B. dorsalis help improve host insecticide resistance and environmental adaption, regulate growth and development, and affect male mating selection, among other functions. Insects have an effective gut defense system that maintains self-immunity and the balance among microorganisms in the gut, in addition to stabilizing the diversity among the gut symbiotic bacteria. However, the detailed regulatory mechanisms governing the gut bacteria and self-immunity are still unclear in oriental fruit flies. In this study, the diversity of the gut symbiotic bacteria in B. dorsalis was altered by feeding host fruit flies antibiotics, and the function of the gut bacteria was predicted. Then, a database of the intestinal transcriptome of the host fruit fly was established and analyzed using the Illumina HiSeq Platform. The gut bacteria shifted from Gram negative to Gram positive after antibiotic feeding. Antibiotics lead to a reduction in gut bacteria, particularly Gram-positive bacteria, which ultimately reduced the reproduction of the host flies. Ten immunity-related genes that were differentially expressed in the response to intestinal bacterial community changes were selected for qRT-PCR validation. Peptidoglycan-recognition protein SC2 gene (PGRP-SC2) was one of the 10 immunity-related genes analyzed. The differential expression of PGRP-SC2 was the most significant, which confirms that PGRP-SC2 may affect immunity of B. dorsalis toward gut bacteria.

4.
Insects ; 10(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842348

ABSTRACT

Tephritidae fruit flies (Diptera: Tephritidae) are regarded as important damage-causing species due to their ability to cause great economic losses in fruit and vegetable crops. Bactrocera minax and Bactrocera tsuneonis are two sibling species of the subgenus Tetradacus of Bactrocera that are distributed across a limited area of China, but have caused serious impacts. They share similar morphological characteristics. These characteristics can only be observed in the female adult individuals. The differences between them cannot be observed in preimaginal stages. Thus, it is difficult to distinguish them in preimaginal stages morphologically. In this study, we used molecular diagnostic methods based on cytochrome c oxidase subunit I and species-specific markers to identify these two species and improve upon the false-positive results of previous species-detection primers. DNA barcode sequences were obtained from 900 individuals of B. minax and 63 individuals of B. tsuneonis. Based on these 658 bp DNA barcode sequences of the cytochrome c oxidase subunit I gene, we successfully designed the species-specific primers for B. minax and B. tsuneonis. The size of the B. minax specific fragment was 422 bp and the size of the B. tsuneonis specific fragment was 456 bp. A series of PCR trials ensured the specificity of these two pairs of primers. Sensitivity assay results demonstrated that the detection limit for the DNA template concentration was 0.1~1 ng/µL for these two species. In this study, we established a more reliable, rapid, and low-cost molecular identification method for all life stages of B. minax and B. tsuneonis. Species-specific PCR can be applied in plant quarantine, monitoring and control of B. minax and B. tsuneonis.

5.
Environ Sci Pollut Res Int ; 24(4): 3400-3411, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866363

ABSTRACT

A pot experiment was conducted to evaluate the feasibility of using tree seedlings for the phytoremediation of lead/zinc (Pb/Zn) mine tailings. Seedlings of three Quercus spp. (Q. shumardii, Q. phellos, and Q. virginiana) and rooted cuttings of two Salix spp. (S. matsudana and S. integra) were transplanted into pots containing 50 and 100 % Pb/Zn mine tailings to evaluate their tolerance of heavy metals. The five species showed different tolerance levels to the Pb/Zn tailings treatments. Q. virginiana was highly tolerant to heavy metals and grew normally in the Pb/Zn tailings. The root systems showed marked differences between the Quercus spp. and Salix spp., indicating that different mechanisms operated to confer tolerance of heavy metals. The maximum efficiency of photosystem II photochemistry value of the five species showed no differences among the treatments, except for Q. shumardii. All species showed low metal translocation factors (TFs). However, S. integra had significantly higher TF values for Zn (1.42-2.18) and cadmium (1.03-1.45) than did the other species. In this respect, Q. virginiana showed the highest tolerance and a low TF, implying that it is a candidate for phytostabilization of mine tailings in southern China. S. integra may be useful for phytoextraction of tailings in temperate regions.


Subject(s)
Lead/pharmacology , Quercus/metabolism , Salix/metabolism , Zinc/pharmacology , Lead/metabolism , Mining , Plant Roots/drug effects , Plant Roots/metabolism , Quercus/drug effects , Salix/drug effects , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...