Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(25): e2400508, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452342

ABSTRACT

The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.

2.
Small Methods ; : e2301411, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420894

ABSTRACT

Aqueous zinc (Zn) ions battery is promising for future large-scale applications of energy storage due to the abundant reserves, high capacity of metallic Zn. However, dendritic growth, severe side reactions have limited the development of Zn-metal anodes. A single skeleton structure or interface protection is difficult to simultaneously mitigate these issues. Here, a novel composite design based on the synergistic interaction between the hydrophobic host, the zincophilic interface is reported. On the one hand, the 3D substrate reduces the local current density, inhibits dendritic growth. On the other hand, the protective interface homogenizes the nucleation due to the formation of the ZnAu3 alloy layer. More importantly, the collaborative construction of the hydrophobicity, zincophilicity for the electrode alleviates the aggravated hydrogen evolution reaction (only 2.5 mmol h-1 ), simultaneously enables a low nucleation overpotential (31.7 mV) during cycling. Consequently, a high Coulombic efficiency of ≈98.25% after 300 cycles is harvested for the composite electrode. The pouch cells assembled by this anode, LiMn2 O4 cathode maintain 82 mAh g-1 capacity retention after 140 cycles. This research shows an innovative Zn-based structural design for aqueous Zn-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...