Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 910907, 2022.
Article in English | MEDLINE | ID: mdl-35966076

ABSTRACT

Background: Diabetic kidney disease (DKD), one of the main complications of diabetes mellitus (DM), has become a frequent cause of end-stage renal disease. A clinically convenient, non-invasive approach for monitoring the development of DKD would benefit the overall life quality of patients with DM and contribute to lower medical burdens through promoting preventive interventions. Methods: We utilized 5hmC-Seal to profile genome-wide 5-hydroxymethylcytosines in plasma cell-free DNA (cfDNA). Candidate genes were identified by intersecting the differentially hydroxymethylated genes and differentially expressed genes from the GSE30528 and GSE30529. Then, a protein interaction network was constructed for the candidate genes, and the hub genes were identified by the MCODE and cytoHubba algorithm. The correlation analysis between the hydroxymethylation level of the hub genes and estimated glomerular filtration rate (eGFR) was carried out. Finally, we demonstrated differences in expression levels of the protein was verified by constructing a mouse model of DKD. In addition, we constructed a network of interactions between drugs and hub genes using the Comparative Toxicogenomics Database. Results: This study found that there were significant differences in the overall distribution of 5hmC in plasma of patients with DKD, and an alteration of hydroxymethylation levels in genomic regions involved in inflammatory pathways which participate in the immune response. The final 5 hub genes, including (CTNNB1, MYD88, CD28, VCAM1, CD44) were confirmed. Further analysis indicated that this 5-gene signature showed a good capacity to distinguish between DKD and DM, and was found that protein levels were increased in renal tissue of DKD mice. Correlation analysis indicated that the hydroxymethylation level of 5 hub genes were nagatively correlated with eGFR. Toxicogenomics analysis showed that a variety of drugs for the treatment of DKD can reduce the expression levels of 4 hub genes (CD44, MYD88, VCAM1, CTNNB1). Conclusions: The 5hmC-Seal assay was successfully applied to the plasma cfDNA samples from a cohort of DM patients with or without DKD. Altered 5hmC signatures indicate that 5hmC-Seal has the potential to be a non-invasive epigenetic tool for monitoring the development of DKD and it provides new insight for the future molecularly targeted anti-inflammation therapeutic strategies of DKD.


Subject(s)
Cell-Free Nucleic Acids , Diabetes Mellitus , Diabetic Nephropathies , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Cell-Free Nucleic Acids/genetics , Diabetic Nephropathies/genetics , Humans , Mice , Myeloid Differentiation Factor 88/metabolism
2.
Macromol Biosci ; 21(4): e2000382, 2021 04.
Article in English | MEDLINE | ID: mdl-33522144

ABSTRACT

Host defense systems can invade viral infection through immune responses and cellular metabolism. Recently, many studies have shown that cellular metabolism can be reprogrammed through N6 -methyladenosine (m6 A) modifications during viral infection. Among of them, methyltransferase like-14 enzyme (METTL14) plays an important role in m6 A RNA modification, yet its antiviral function still remains unclear. In this work, it is uncovered that metal-protein nanoparticles designated GSTP1-MT3(Fe2+ ) (MPNP) can polarize macrophages toward the M1 phenotype and activate immune responses to induce Interferon-beta (IFN-ß) production in vesicular stomatitis virus (VSV)-infected macrophages. Further investigation elucidates that a high dose of IFN-ß can promote the expression of METTL14, which has a well anti-VSV capacity. Moreover, it is found that other negative-sense single-stranded RNA viruses, such as influenza viruses (H1N1(WSN)), can also be inhibited through either immune responses or METTL14. Collectively, these findings provide insights into the antiviral function of METTL14 and suggest that the manipulation of METTL14 may be a potential strategy to intervene with other negative-sense single-stranded RNA viruses infections.


Subject(s)
Antiviral Agents/pharmacology , Immunity, Innate/drug effects , Influenza A Virus, H1N1 Subtype , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Animals , Cell Line , Gene Expression/drug effects , HEK293 Cells , Humans , Interferon-beta/genetics , Iron/chemistry , Methyltransferases/metabolism , Mice , Nanoparticles , Phenotype , RAW 264.7 Cells , THP-1 Cells , Vesicular stomatitis Indiana virus/metabolism , Vesiculovirus , Virus Replication/drug effects
3.
Curr Med Sci ; 40(2): 205-217, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32337682

ABSTRACT

In the 1920s, Dr Otto Warburg first suggested the significant difference in energy metabolism between malignant cancer cells and adjacent normal cells. Tumor cells mainly adopt the glycolysis as energy source to maintain tumor cell growth and biosynthesis under aerobic conditions. Investigation on energy metabolism pathway in cancer cells has aroused the interest of cancer researchers all around the world. In recent years, plentiful studies suggest that targeting the peculiar cancer energy metabolic pathways, including glycolysis, mitochondrial respiration, amino acid metabolism, and fatty acid oxidation may be an effective strategy to starve cancer cells by blocking essential nutrients. Natural products (NPs) are considered as the "treasure trove of small molecules drugs" and have played an extremely remarkable role in the discovery and development of anticancer drugs. And numerous NPs have been reported to act on cancer energy metabolism targets. Herein, a comprehensive overview about cancer energy metabolism targets and their natural-occurring inhibitors is prepared.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Gene Regulatory Networks/drug effects , Neoplasms/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Cell Proliferation/drug effects , Cell Respiration/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycolysis/drug effects , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy
4.
Bioorg Chem ; 97: 103714, 2020 04.
Article in English | MEDLINE | ID: mdl-32146181

ABSTRACT

Six new triterpenoids (1-6) and 22 known analogues (7-28), were separated from the aerial parts of Anchusa italica Retz., a traditional Uygur medicine for treating cardiovascular and cerebrovascular diseases in the Xinjiang region, China. The possible effects of compounds 1-28 on hypoxia/reoxygenation (H/R) induced cardiomyocytes injury were assayed, and compounds 4, 6-17, 21-22 and 26-28 showed significant protective effects. Further, the representative new compound 6 significantly suppressed the levels of H/R-induced apoptosis and autophagy in neonatal rat cardiomyocytes, with the reversing of the downregulated expression of Bcl-2 and upregulated expression of Bax and Beclin-1 by compound 6 treatment in neonatal rat cardiomyocytes following H/R injury. In addition, compound 6 protected cardiomyocyte from H/R injury, and pretreatment with 6 could decrease CK and LDH levels. Compound 6 also alleviated H/R-induced phosphorylation of p38 MAPK in neonatal rat cardiomyocytes. Therefore, tripterpenoid 6 and its analogues may be the pharmacodyamic material of A. italica, and offer a promising therapeutic approach for treating cardiomyocyte injury induced by H/R.


Subject(s)
Boraginaceae/chemistry , Cardiotonic Agents/pharmacology , Cell Hypoxia/drug effects , Myocytes, Cardiac/drug effects , Triterpenes/pharmacology , Animals , Apoptosis/drug effects , Cardiotonic Agents/chemistry , Cells, Cultured , Hypoxia/drug therapy , Hypoxia/metabolism , Hypoxia/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxygen/metabolism , Rats, Sprague-Dawley , Triterpenes/chemistry
5.
Bioorg Chem ; 92: 103186, 2019 11.
Article in English | MEDLINE | ID: mdl-31465967

ABSTRACT

Kidney-type glutaminase (KGA), catalyzing the hydrolysis of glutamine to glutamate for energy supply, is over-expressed in many cancers and has been regarded as a new therapeutic target for cancers. Physapubescin I was isolated from the fruits of the edible herb Physalis pubescens L., commonly named as "husk tomato or hairy groundcherry", and was predicted to be a potential KGA inhibitor through structure-based virtual ligand screening. Enzyme inhibition assays, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) experiments have demonstrated the high efficiency and specificity of physapubescin I targeting KGA. EdU proliferation, Hoechst 33258 staining and cytotoxicity assays indicated that physapubescin I could inhibit cancer cell proliferation and promote apoptosis more effectively than the known KGA inhibitor, BPTES. Knockdown of KGA by siRNA reduced the inhibition of physapubescin I to SW1990 cells. Meanwhile, physapubescin I impaired glutamine metabolism in SW1990 cells with increasing intracellular level of glutamine, and correspondingly decreasing glutamate and its downstream metabolites, which may account for its inhibition of cancer cell proliferation and proapoptosis. Physapubescin I also showed significant tumor growth inhibition and low toxicity in a SW1990 xenograft mouse model. Collectively, physapubescin I may serve as a potential drug candidate or lead compound for cancer therapy by targeting KGA.


Subject(s)
Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Glutaminase/antagonists & inhibitors , Solanum lycopersicum/chemistry , Withanolides/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Drug Screening Assays, Antitumor , Enzyme Inhibitors/pharmacology , Escherichia coli , Glutaminase/genetics , Glutamine/metabolism , Heterografts/drug effects , Humans , Kidney/metabolism , Ligands , Male , Mice , Mice, SCID , Molecular Docking Simulation , Protein Binding , Protein Conformation , Withanolides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...