Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 45(1): 227-236, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34626233

ABSTRACT

The objective of this study was aiming at developing an efficient strategy to promote enzymatic hydrolysis of naked oat straw and deciphering the potential mechanism. Irpex lacteus and Phlebia acerina were employed to inoculated on the naked oat straw for 4 weeks which the changes of fiber components, fermentation losses, lignin-degrading enzymes production pattern were determined weekly. Furthermore, the 72 h enzymatic hydrolysis of ultimately fermented naked oat straw were also evaluated. The acid detergent lignin was degraded at about 25% along with the moderate dry matter and cellulose loss which both showed selective degradation. The lignin-degrading enzymes production patterns of the two fungi were different which lignin peroxidase was not detected in Irpex lacteus treatment. In addition, the activities of cellulolytic enzymes were higher in Phlebia acerina treatment. After 72 h enzymatic hydrolysis, the reducing sugar content and hydrolysis yield pretreated by Irpex lacteus was 12.92 g/L and 69.49%, respectively. It was much higher than that in sterilized substrate and Phlebia acerina treatment. Meanwhile, the hydrolysis yields of glucose, sum of xylose and arabinose were all improved by Irpex lacteus which were 30.96% and 25.62%, respectively, and showed significant enhancements compared to control and Phlebia acerina treatment. Irpex lacteus is one of effective white rot fungi which could promote the enzymatic hydrolysis of naked oat straw obviously.


Subject(s)
Avena/chemistry , Enzymes/metabolism , Polyporales/chemistry , Hydrolysis
2.
J Appl Microbiol ; 132(4): 2594-2604, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34897914

ABSTRACT

AIMS: To clarify the molecular mechanisms underlying ammonia (NH3 ) and biogenic amines (BAEs) formation in alfalfa silage, whole metagenomic sequencing analysis was performed to identify the linkages between functional bacteria and their responsible enzymes in alfalfa silage prepared with and without sucrose addition. METHODS AND RESULTS: Genes encoding nitrite reductase (nirB) resulting in NH3 formation were the most abundant and were mostly assigned to Enterobacter cloacae and Klebsiella oxytoca. Putrescine-related genes, classified mainly to encode ornithine decarboxylase (odcA), were predominantly carried by Escherichia coli, Ent. cloacae and Citrobacter sp. Escherichia coli and Kl. oxytoca were the important species responsible for cadaverine and tyramine formation. Ent. cloacae, E. coli, and Kl. oxytoca dominated the bacterial community in naturally fermented alfalfa silage, whilst sucrose-treated silages greatly inhibited the growth of these species by promoting the dominance of Lactobacillus plantarum, thus decreasing the concentrations of NH3 , cadaverine, putrescine and tyramine. CONCLUSIONS: Enterobacteriaceae bacteria are mainly responsible for the NH3 , putrescine, cadaverine and tyramine formations in alfalfa silage. SIGNIFICANCE AND IMPACT OF THE STUDY: Whole metagenomic sequencing analysis served as a useful tool to identify the linkages between functional bacteria and associated enzymes responsible for NH3 and BAEs formation.


Subject(s)
Medicago sativa , Silage , Ammonia , Bacteria/genetics , Biogenic Amines , Escherichia coli , Fermentation , Medicago sativa/microbiology , Silage/microbiology
3.
Animals (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925198

ABSTRACT

To develop an alternative high-protein forage resource to alleviate ruminant feed shortages, we investigated the effects of replacing alfalfa (Medicago sativa L.) with different ratios of paper mulberry (Broussonetia papyrifera L., RY) on fermentation quality, protein degradation, and in vitro digestibility of total mixed ration (TMR) silage. The TMR were made with alfalfa and RY mixtures (36.0%), maize meal (35.0%), oat grass (10.0%), soybean meal (7.5%), brewers' grain (5.0%), wheat bran (5.0%), premix (1.0%), and salt (0.5%) on a dry matter basis, respectively. The alfalfa and RY mixtures were made in the following ratios of dry matter: 36:0 (RY0), 27:9 (RY9), 18:18 (RY18), 9:27 (RY27), and 0:36 (RY36). After ensiling for 7, 14, 28, and 56 days, fermentation quality, protein degradation, and microbial counts were examined, and chemical composition and in vitro digestibility were analyzed after 56 days of ensiling. All TMR silages, irrespective of the substitution level of RY, were well preserved with low pH and ammonia nitrogen content, high lactic acid content, and undetectable butyric acid. After ensiling, the condensed tannin content for RY18 silages was higher than the control, but non-protein nitrogen, peptide nitrogen, and free amino acid nitrogen contents was lower, while the fraction B1 (buffer-soluble protein) was not different among all the silages. Dry matter and crude protein digestibility for RY27 and RY36 silages was lower than the control, but there was no difference between control and RY18 silages. This study suggested that ensiling RY with alfalfa inhibited true protein degradation, but decreased in vitro dry matter and crude protein digestibility of TMR silages, and that 18:18 is the optimal ratio.

4.
Sci Rep ; 10(1): 17782, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33082504

ABSTRACT

This study was conducted to examine the effects of Lactobacillus plantarum (LP) and sucrose (S) on clostridial community dynamics and correlation between clostridia and other bacteria in alfalfa silage during ensiling. Fresh alfalfa was directly ensiled without (CK) or with additives (LP, S, LP + S) for 7, 14, 28 and 56 days. Clostridial and bacterial communities were evaluated by next-generation sequencing. Severe clostridial fermentation occurred in CK, as evidenced by the high contents of butyric acid, ammonia nitrogen, and clostridia counts, whereas all additives, particularly LP + S, decreased silage pH and restrained clostridial fermentation. Clostridium perfringens and Clostridium butyricum might act as the main initiators of clostridial fermentation, with Clostridium tyrobutyricum functioning as the promoters of fermentation until the end of ensiling. Clostridium tyrobutyricum (33.5 to 98.0%) dominated the clostridial community in CK from 14 to 56 days, whereas it was below 17.7% in LP + S. Clostridium was negatively correlated with the genus Lactobacillus, but positively correlated with the genera Enterococcus, Lactococcus and Leuconostoc. Insufficient acidification promoted the vigorous growth of C. tyrobutyricum of silage in later stages, which was mainly responsible for the clostridial fermentation of alfalfa silage.


Subject(s)
Animal Feed/microbiology , Clostridium/physiology , Lactobacillus plantarum/physiology , Medicago sativa/microbiology , Microbiota , Silage/microbiology , Animals , Biotechnology , Butyric Acid/metabolism , Fermentation , Livestock , Nitrogen/metabolism , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...