Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2401052, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923689

ABSTRACT

Nickel-rich layered oxide cathode material LiNixCoyMnzO2 (NCM) has emerged as a promising candidate for next-generation lithium-ion batteries (LIBs). These cathode materials possess high theoretical specific capacity, fast electron/ion transfer rate, and high output voltage. However, their potential is impeded by interface instability, irreversible phase transition, and the resultant significant capacity loss, limiting their practical application in LIBs. In this work, a simple and scalable approach is proposed to prepare gradient cathode material (M-NCM) with excellent structural stability and rate performance. Taking advantage of the strong coordination of Ni2+ with ammonia and the reduction reaction of KMnO4, the elemental compositions of the Ni-rich cathode are reasonably adjusted. The resulted gradient compositional design plays a crucial role in stabilizing the crystal structure, which effectively mitigates Li/Ni mixing and suppresses unwanted surficial parasitic reactions. As a result, the M-NCM cathode maintains 98.6% capacity after 200 cycles, and a rapid charging ability of 107.5 mAh g-1 at 15 C. Furthermore, a 1.2 Ah pouch cell configurated with graphite anode demonstrates a lifespan of over 500 cycles with only 8% capacity loss. This work provides a simple and scalable approach for the in situ construction of gradient cathode materials via cooperative coordination and deposition reactions.

2.
Immunology ; 172(4): 533-546, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38561001

ABSTRACT

Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.


Subject(s)
Cellular Microenvironment , Fibrosis , Radiation Injuries , Radiotherapy , Humans , Animals , Radiation Injuries/immunology , Radiotherapy/adverse effects , Extracellular Matrix/metabolism , Extracellular Matrix/immunology , Extracellular Matrix/radiation effects
3.
Adv Mater ; 36(23): e2403234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38504525

ABSTRACT

The plastic waste issue has posed a series of formidable challenges for the ecological environment and human health. While conventional recycling strategies often lead to plastic down-cycling, the electrochemical strategy of recovering valuable monomers enables an ideal, circular plastic economy. Here a corrosion synthesized single atom Pt1/Ni(OH)2 electrocatalyst with part-per-million noble Pt loading for highly efficient and selective upcycling of polyethylene terephthalate (PET) into valuable chemicals (potassium diformate and terephthalic acid) and green hydrogen is reported. Electro-oxidation of PET hydrolysate, ethylene glycol (EG), to formate is processed with high Faraday efficiency (FE) and selectivity (>90%) at the current density close to 1000 mA cm-2 (1.444 V vs RHE). The in situ spectroscopy and density functional theory calculations provide insights into the mechanism and the understanding of the high efficiency. Remarkably, the electro-oxidation of EG at the ampere-level current density is also successfully illustrated by using a membrane-electrode assembly with high FEs to formate integrated with hydrogen production for 500 h of continuous operation. This process allows valuable chemical production at high space-time yield and is highly profitable (588-700 $ ton-1 PET), showing an industrial perspective on single-atom catalysis of electrochemical plastic upcycling.

4.
Nature ; 626(7998): 313-318, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326591

ABSTRACT

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

5.
Adv Mater ; 36(21): e2313456, 2024 May.
Article in English | MEDLINE | ID: mdl-38377174

ABSTRACT

All-solid-state lithium metal batteries (LMBs) are currently one of the best candidates for realizing the yearning high-energy-density batteries with high safety. However, even polyethylene oxide (PEO), the most popular polymeric solid-state electrolyte (SSE) with the largest ionic conductivity in the category so far, has significant challenges due to the safety issues of lithium dendrites, and the insufficient ionic conductivity. Herein, molecular sieve (MS) is integrated into the PEO as an inert filler with the liquid metal (LM) as a functional module, forming an "LM-MS-PEO" composite as both SSE with enhanced ionic conductivity, and protection layer against lithium dendrites. As demonstrated by theoretical and experimental investigations, LM released from MS can be uniformly and efficiently distributed in PEO, which could avoid agglomeration, enable the effective blocking of lithium dendrites, and regulate the mass transport of Li ions, thus achieving even deposition of lithium during charge/discharge. Moreover, MS could reduce the crystallinity of PEO, improve lithium-ion conductivity, and reduce operating temperature. Benefiting from the introduction of the functional MS/LM, the LM-MS-PEO electrolyte exhibits fourfold higher lithium ionic conductivity than the pristine PEO at 40 °C, while the as-assembled all-solid-state LMBs have four to five times longer stable cycle life.

6.
Angew Chem Int Ed Engl ; 63(5): e202315087, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38087471

ABSTRACT

The reaction rate bottleneck during interconversion between insulating S8 (S) and Li2 S fundamentally leads to incomplete conversion and restricted lifespan of Li-S battery, especially under high S loading and lean electrolyte conditions. Herein, we demonstrate a new catalytic chemistry: soluble semiquinone, 2-tertbutyl-semianthraquinone lithium (Li+ TBAQ⋅- ), as both e- /Li+ donor and acceptor for simultaneous S reduction and Li2 S oxidation. The efficient activation of S and Li2 S by Li+ TBAQ⋅- in the initial discharging/charging state maximizes the amount of soluble lithium polysulfide, thereby substantially improve the rate of solid-liquid-solid reaction by promoting long-range electron transfer. With in situ Raman spectra and theoretical calculations, we reveal that the activation of S/Li2 S is the rate-limiting step for effective S utilization under high S loading and low E/S ratio. Beyond that, the S activation ratio is firstly proposed as an accurate indicator to quantitatively evaluate the reaction rate. As a result, the Li-S batteries with Li+ TBAQ⋅- deliver superior cycling performance and over 5 times higher S utilization ratio at high S loading of 7.0 mg cm-2 and a current rate of 1 C compared to those without Li+ TBAQ⋅- . We hope this study contributes to the fundamental understanding of S redox chemical and inspires the design of efficient catalysis for advanced Li-S batteries.

7.
Adv Mater ; 36(1): e2307220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37742095

ABSTRACT

Despite the high energy of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathode, it still suffers serious decay due to the continuous solvents decomposition and unstable cathode electrolyte interphase (CEI) layers, especially under high temperatures. The intense exothermic reaction between delithiated NCM811 and flammable electrolyte, on the other hand, pushes the batteries to their safety limit. Herein, these two issues are tackled via engineering the electrolytes, that is, utilizing salts with higher HOMO levels and nonflammable solvents with lower HOMO levels, to reduce the massive decomposition of solvents and improve battery safety under elevated temperatures. Consequently, a thin and boron-rich CEI is generated, which effectively inhibited the side reactions, thus improving the cycling stability and safety. Deviated from the highly concentrated electrolytes which heavily relies on the usage of massive salts, the electrolyte recipe can introduce a robust inorganic-rich CEI but use much less salt (i.e., dilute electrolyte), and thus, offer an encouraging alternative toward practical applications. As such, the NCM811 cathode exhibits a high-capacity retention of 81.2% after 950 cycles at 25 °C and 75% after 300 cycles at 55 °C. This work provides a universal electrolyte design strategy for designing stable and safe high-temperature electrolytes for the NCM811 cathode.

8.
Angew Chem Int Ed Engl ; 62(49): e202311460, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37707882

ABSTRACT

Organic electrode materials (OEMs), valued for their sustainability and structural tunability, have been attracting increasing attention for wide application in sodium-ion batteries (SIBs) and other rechargeable batteries. However, most OEMs are plagued with insufficient specific capacity or poor cycling stability. Therefore, it's imperative to enhance their specific capacity and cycling stability through molecular design. Herein, we designed and synthesized a heteroaromatic molecule 2,3,8,9,14,15-hexanol hexaazatrinaphthalene (HATN-6OH) by the synergetic coupling of catechol (the precursor of ortho-quinone)/ortho-quinone functional groups and HATN conjugated core structures. The abundance of catechol/ortho-quinone and imine redox-active moieties delivers a high specific capacity of nine-electron transfer for SIBs. Most notably, the π-π interactions and intermolecular hydrogen bond forces among HATN-6OH molecules secure the stable long-term cycling performance of SIBs. Consequently, the as-prepared HATN-6OH electrode exhibited a high specific capacity (554 mAh g-1 at 0.1 A g-1 ), excellent rate capability (202 mAh g-1 at 10 A g-1 ), and stable long-term cycling performance (73 % after 3000 cycles at 10 A g-1 ) in SIBs. Additionally, the nine-electron transfer mechanism is confirmed by systematic density functional theory (DFT) calculation, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Raman analysis. The achievement of the synergetic coupling of the redox-active sites on OEMs could be an important key to the enhancement of SIBs and other metal-ion batteries.

9.
Front Oncol ; 13: 1192597, 2023.
Article in English | MEDLINE | ID: mdl-37664074

ABSTRACT

Background: Liver cancer (LC) is one of the most common malignancies. Currently, nanotechnology has made great progress in LC research, and many studies on LC nanotechnology have been published. This study aims to discuss the current status, hot spots, and research trends in this field through bibliometric analysis. Methods: The Web of Science Core Collection (WoSCC) database was searched for papers related to hepatocellular carcinoma (HCC) included from January 2000 to November 2022, and its research hotspots and trends were visualized and analyzed with the help of VOSviewer. In addition, a search was conducted to find LC papers related to nanotechnology. Then we used the visual analysis software VOSviewer and CiteSpace to evaluate the contributions of countries/regions, authors, and journals related to the topic and analyze keywords to understand the research priorities and hot spots in the field as well as the development direction. Results: There are 1908 papers in the highly cited literature on LC, and its research hotspots are pathogenesis, risk factors, and survival rate. The literature on the application of nanotechnology in LC had 921 papers. Among them, China (n=560, 60.8%) and the United States (n=170, 18.5%) were the countries with the highest number of published papers. Wang Yan (n=11) and Llovet JM (n=131) were the first authors and co-cited authors, respectively. The International Journal of Nanomedicine was the most prolific academic journal (n=41). In addition to "hepatocellular carcinoma" and "nanoparticles", the most frequent keyword was "drug delivery". In recent years, "metastasis" and "diagnosis" appeared in the keyword bursts. This indicates that the application of nanoparticles in the early diagnosis and drug delivery of LC (including liver metastasis) has a good prospect. Conclusion: Nanotechnology has received more and more attention in the medical field in recent years. As nanoparticles are easily localized in organelles and cells, they can increase drug permeability in tumor tissues, improve drug delivery efficiency and reduce drug toxicity. Our research results were the first scientific evaluation of the application of nanotechnology in LC, providing scholars with research hotspots and development trends.

10.
Nat Commun ; 14(1): 3634, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37337012

ABSTRACT

Electrochemical conversion of nitrate to ammonia offers an efficient approach to reducing nitrate pollutants and a potential technology for low-temperature and low-pressure ammonia synthesis. However, the process is limited by multiple competing reactions and NO3- adsorption on cathode surfaces. Here, we report a Fe/Cu diatomic catalyst on holey nitrogen-doped graphene which exhibits high catalytic activities and selectivity for ammonia production. The catalyst enables a maximum ammonia Faradaic efficiency of 92.51% (-0.3 V(RHE)) and a high NH3 yield rate of 1.08 mmol h-1 mg-1 (at - 0.5 V(RHE)). Computational and theoretical analysis reveals that a relatively strong interaction between NO3- and Fe/Cu promotes the adsorption and discharge of NO3- anions. Nitrogen-oxygen bonds are also shown to be weakened due to the existence of hetero-atomic dual sites which lowers the overall reaction barriers. The dual-site and hetero-atom strategy in this work provides a flexible design for further catalyst development and expands the electrocatalytic techniques for nitrate reduction and ammonia synthesis.

11.
Adv Mater ; 35(26): e2300861, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36990963

ABSTRACT

The practical viability of high-energy-density lithium-sulfur (Li-S) batteries stipulates the use of a high-loading cathode and lean electrolyte. However, under such harsh conditions, the liquid-solid sulfur redox reaction is much retarded due to the poor sulfur and polysulfides utilization, leading to low capacity and fast fading. Herein, a self-assembled macrocyclic Cu(II) complex (CuL) is designed as an effective catalyst to homogenize and maximize the liquid-involving reaction. The Cu(II) ion coordinated with four N atoms features a planar d sp 2 ${\mathrm{d}}_{{\mathrm{sp}}^{2}}$ hybridization, showing a strong bonding affinity toward lithium polysulfides (LiPSs) along the d z 2 ${\mathrm{d}}_{{z}^{2}}$ orbital via steric effects. Such a structure not only lowers the energy barrier of the liquid-solid conversion (Li2 S4 to Li2 S2 ) but also guides a 3D deposition of Li2 S2 /Li2 S. As such, with a 1 wt% electrolyte additive of CuL, a high initial capacity of 925 mAh g-1 and areal capacity of 9.62 mAh cm-2 with a low decay of 0.3%/cycle can be achieved under a high sulfur loading of 10.4 mg cm-2 and low electrolyte/sulfur ratio of 6 µL mgs -1 . This work is expected to inspire the design of homogenous catalysts and accelerate the uptake of high-energy-density Li-S batteries.

12.
Poult Sci ; 102(3): 102468, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682130

ABSTRACT

Pickled eggs enjoy a long processing history with unique flavor and rich nutrition but suffer from long pickling cycle due to the limitations of traditional processing methods. In terms of quality, salted egg whites have the disadvantage of high sodium content, and salted egg yolks have problems such as hard core and black circle around outer layer. Likewise, the quality of preserved eggs is challenged by the black spots (dots) on the eggshells and the high content of heavy metals in the egg contents. The sustainable development of traditional pickled eggs are hindered by these defects and extensive research has been carried out in recent years. Based on the elaboration of the quality formation mechanism of salted eggs and preserved eggs, this paper reviewed the processing principles and applications of rapid pickling technologies like ultrasonic technology, magnetoelectric-assisted technology, water cycle technology, vacuum decompression technology, and pulsed pressure technology, as well as the quality optimization methods such as controlling the sodium content of the salted egg whites, improving the quality of salted egg yolks, promoting the quality of lead-free preserved eggs, and developing heavy metal-free preserved eggs. In the end, the future development trend of traditional pickled eggs was summarized and prospected in order to provide theoretical guidance for the actual production.


Subject(s)
Chickens , Ovum , Animals , Egg Yolk , Egg White , Sodium , Eggs
13.
Opt Express ; 30(11): 19684-19704, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221738

ABSTRACT

In-line X-ray phase-contrast computed tomography typically contains two independent procedures: phase retrieval and computed tomography reconstruction, in which multi-material and streak artifacts are two important problems. To address these problems simultaneously, an accelerated 3D iterative image reconstruction algorithm is proposed. It merges the above-mentioned two procedures into one step, and establishes the data fidelity term in raw projection domain while introducing 3D total variation regularization term in image domain. Specifically, a transport-of-intensity equation (TIE)-based phase retrieval method is updated alternately for different areas of the multi-material sample. Simulation and experimental results validate the effectiveness and efficiency of the proposed algorithm.

14.
Am J Orthod Dentofacial Orthop ; 162(2): 162-172, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35654687

ABSTRACT

INTRODUCTION: The zygomaticomaxillary suture (ZMS) maturation evaluation is a reliable method for predicting the optimal timing of maxillary protraction. The objective of this study was to compare age distribution patterns of ZMS maturation stages between cleft lip and palate (CLP) patients and non-cleft lip and palate (non-CLP) patients to aid our comprehension in choosing the optimal timing of maxillary protraction. METHODS: Samples of 216 non-CLP and 220 CLP Asian patients without orthodontic and orthognathic treatment aged 5-25 years were scanned to evaluate the ZMS maturation stage by 2 evaluators blindly. Evaluators' agreements and bilateral ZMS maturation consistency were assessed by weighted kappa tests. Age distribution patterns of each ZMS maturation stage were described. Gender effect and age distribution differences between groups were analyzed using an independent t-test. RESULTS: Evaluators' agreements and bilateral ZMS maturation consistency were satisfying (weighted kappa coefficient >0.90). At stages A and B, patients with CLP were 1.3 and 0.4 years older than patients in the non-CLP group (P <0.001 and P = 0.01). In contrast, at stage C, patients with CLP were approximately 1.2 years younger (P = 0.004). Gender barely played a role in the divergence of ZMS maturation (P >0.05). No statistically significant difference was observed between ZMS maturation of patients with unilateral or bilateral cleft lip and palate (UBCLP) and patients with unilateral or bilateral cleft lip (UBCL) (P >0.05). CONCLUSIONS: The ZMS development of patients with CLP was premature at stage C, whereas delayed at stages A and B.


Subject(s)
Cleft Lip , Cleft Palate , Cleft Lip/surgery , Cleft Palate/surgery , Cranial Sutures , Humans , Sutures
15.
Angew Chem Int Ed Engl ; 61(41): e202206152, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35768337

ABSTRACT

Bioinspired asymmetric nanofluidic ion channels with ionic diode behavior that can boost the osmotic energy (so-called blue energy) conversion are highly desirable, especially if they can be easily constructed and modified. Two-dimensional (2D) metal carbides and nitrides, known as MXenes, combine hydrophilic surfaces and tunable surface charge properties, providing a shortcut to prepare asymmetric nanofluidic ion channels. Here, we report a mechanically robust, flexible, and scale-up-friendly asymmetric Ti3 C2 Tx MXene-based ionic diode membrane with a highly rectified current and demonstrate its potential use in reverse electrodialysis osmotic energy conversion. Under the salinity gradient of synthetic seawater and river water, our ionic diode membrane-based generator's power density is 8.6 W m-2 and up to 17.8 W m-2 at a 500-fold salinity gradient, outperforming the state-of-the-art membranes. The design of MXene-based ionic diode-type membrane provides a facile and general strategy in developing large-scale 2D nanofluidics and selective ion transport.


Subject(s)
Salinity , Titanium , Ions , Osmosis , Water
16.
Adv Mater ; 34(39): e2202892, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35641316

ABSTRACT

Efforts to enable fast charging and high energy density lithium-ion batteries (LIBs) are hampered by the trade-off nature of the traditional electrode design: increasing the areal capacity usually comes with sacrificing the fast charge transfer. Here a single-layer chunky particle electrode design is reported, where red-phosphorus active material is embedded in nanochannels of vertically aligned graphene (red-P/VAG) assemblies. Such an electrode design addresses the sluggish charge transfer stemming from the high tortuosity and inner particle/electrode resistance of traditional electrode architectures consisting of randomly stacked active particles. The vertical ion-transport nanochannels and electron-transfer conductive nanowalls of graphene confine the direction of charge transfer to minimize the transfer distance, and the incomplete filling of nanochannels in the red-P/VAG composite buffers volume change locally, thus avoiding the variation of electrodes thickness during cycling. The single-layer chunky particle electrode displays a high areal capacity (5.6 mAh cm-2 ), which is the highest among the reported fast-charging battery chemistries. Paired with a high-loading LiNi0.6 Co0.2 Mn0.2 O2 (NCM622) cathode, a pouch cell shows stable cycling with high energy and power densities. Such a single-layer chunky particle electrode design can be extended to other advanced battery systems and boost the development of LIBs with fast-charging capability and high energy density.

17.
Med Phys ; 49(1): 393-410, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34854084

ABSTRACT

PURPOSE: High-resolution synchrotron radiation X-ray phase contrast microtomography (PC-µCT) images often suffer from severe ring artifacts, which are mainly caused by undesirable responses of detector elements. In the medical imaging field, the existence of ring artifacts can lead to degraded visual quality and can directly affect diagnosis accuracy. Thus, removing or at least effectively reducing ring artifacts is indispensable. METHOD: The existing ring artifacts removal algorithms mainly focus on two-dimensional (matrix-based) priors, and these algorithms fail to consider correlations hidden in sequential computed tomography (CT) images. This paper proposed a novel three-dimensional (tensor-based) ring artifacts removal algorithm for synchrotron radiation X-ray PC-µCT images. In the sinogram domain, ring artifacts manifest as vertical stripe artifacts. From an image decomposition perspective, a degraded sinogram can be decomposed into a stripe artifacts component and an underlying clean sinogram component. The proposed algorithm is designed to detect and remove stripe artifacts from a degraded sinogram by fully identifying the characteristics of the two components. Specifically, for the stripe artifacts component, tensor Tucker decomposition is used to describe its low-rank character. For the underlying clean sinogram component, spatial-sequential total variation regularization is adopted to enhance the piecewise smoothness. Moreover, the Frobenius norm term is further used to model Gaussian noise. An efficient augmented Lagrange multiplier method is designed to solve the proposed optimization model. RESULTS: The proposed method is evaluated utilizing both simulations and real data containing different ring artifacts patterns. In the simulations, the human chest CT images are used for evaluating the proposed method. We compare the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and mean absolute error (MAE) results of our algorithm with the Naghia's method, the RRRTV method, the wavelet-FFT method, and the SDRSD-GIF method. The proposed method was also evaluated on real data from rat liver samples and rat tooth samples. Our proposed method outperforms the competing methods in terms of both qualitative and quantitative evaluation results. Additionally, the 3D visualization results were presented to make the ring artifacts removal effect more intuitive. CONCLUSION: The experimental results on simulations and real data clearly demonstrated that the proposed algorithm can significantly improve the quality of PC-µCT images compared with the existing popular algorithms, and it has great potential to promote the application of high-resolution imaging for visualizing biological tissues.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Algorithms , Animals , Phantoms, Imaging , Rats , X-Ray Microtomography
18.
Opt Lett ; 46(15): 3552-3555, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329222

ABSTRACT

Propagation-based X-ray phase-contrast computed tomography (PB-PCCT) can serve as an effective tool for studying organ function and pathologies. However, it usually suffers from a high radiation dose due to the long scan time. To alleviate this problem, we propose a deep learning reconstruction framework for PB-PCCT with sparse-view projections. The framework consists of dual-path deep neural networks, where the edge detection, edge guidance, and artifact removal models are incorporated into two subnetworks. It is worth noting that the framework has the ability to achieve excellent performance by exploiting the data-based knowledge of the sample material characteristics and the model-based knowledge of PB-PCCT. To evaluate the effectiveness and capability of the proposed framework, simulations and real experiments were performed. The results demonstrated that the proposed framework could significantly suppress streaking artifacts and produce high-contrast and high-resolution computed tomography images.

19.
J Microsc ; 284(1): 74-82, 2021 10.
Article in English | MEDLINE | ID: mdl-34143441

ABSTRACT

Clear and complete microstructural imaging of the root canal isthmus is an important part of pathological investigations in research and clinical practice. X-ray micro-computed tomography (µCT) is a widely used non-destructive imaging technique, which allows for distortion-free three-dimensional (3D) visualisation. While absorption µCT typically has poor contrast resolution for observing the root canal isthmus, especially for weak-absorbing tissues, propagation-based X-ray phase-contrast imaging (PBI) is a powerful imaging method, which in its combination with µCT (PB-PCµCT) enables high-resolution and high-contrast microstructural imaging of the weak-absorbing tissues in samples. To investigate the feasibility and ability of PB-PCµCT in microstructural imaging of the root canal isthmus, conventional absorption µCT and PB-PCµCT experiments were performed. The two-dimensional (2D) and 3D comparison results demonstrated that, compared to absorption µCT, PB-PCµCT has the ability to image the root canal isthmus more clearly and completely, and thus, it has great potential to serve as a valuable tool for biomedical and preclinical studies on the root canal isthmus.


Subject(s)
Dental Pulp Cavity , Imaging, Three-Dimensional , Microscopy, Phase-Contrast , X-Ray Microtomography , X-Rays
20.
Front Physiol ; 12: 653040, 2021.
Article in English | MEDLINE | ID: mdl-33959039

ABSTRACT

Cleft palate, a common global congenital malformation, occurs due to disturbances in palatal growth, elevation, contact, and fusion during palatogenesis. The Fibroblast growth factor 9 (FGF9) mutation has been discovered in humans with cleft lip and palate. Fgf9 is expressed in both the epithelium and mesenchyme, with temporospatial diversity during palatogenesis. However, the specific role of Fgf9 in palatogenesis has not been extensively discussed. Herein, we used Ddx4-Cre mice to generate an Fgf9-/- mouse model (with an Fgf9 exon 2 deletion) that exhibited a craniofacial syndrome involving a cleft palate and deficient mandibular size with 100% penetrance. A smaller palatal shelf size, delayed palatal elevation, and contact failure were investigated to be the intrinsic causes for cleft palate. Hyaluronic acid accumulation in the extracellular matrix (ECM) sharply decreased, while the cell density correspondingly increased in Fgf9-/- mice. Additionally, significant decreases in cell proliferation were discovered in not only the palatal epithelium and mesenchyme but also among cells in Meckel's cartilage and around the mandibular bone in Fgf9-/- mice. Serial sections of embryonic heads dissected at embryonic day 14.5 (E14.5) were subjected to craniofacial morphometric measurement. This highlighted the reduced oral volume owing to abnormal tongue size and descent, and insufficient mandibular size, which disturbed palatal elevation in Fgf9-/- mice. These results indicate that Fgf9 facilitates palatal growth and timely elevation by regulating cell proliferation and hyaluronic acid accumulation. Moreover, Fgf9 ensures that the palatal elevation process has adequate space by influencing tongue descent, tongue morphology, and mandibular growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...