Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; PP2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564342

ABSTRACT

BACKGROUND: Tumor treating fields (TTFields) therapy has shown effectiveness in glioblastoma treatment and holds potential for other cancers. However, its application in pancreatic cancer and the distribution of electric fields in pancreas remain unexplored. This study aims to investigate the electric field distributions in pancreatic regions using different array configurations for TTFields therapy. METHODS: Computational modelling was employed to simulate electric field distributions, and quantitative analysis was conducted. Human body impedance measurements were used to optimize the electric properties of the model. Various array configurations were examined to assess their impact on the electric field distributions. RESULTS: The study revealed that well-positioned arrays, specifically the combination of 20-piece transducer arrays in anterior-posterior orientation and 13-piece transducer arrays in left-right orientation, consistently achieved electric fields exceeding the 1V/cm threshold in over 99.4% of the pancreas. Even with a reduced number of transducers (13 pieces for both orientations), sufficient electric field coverage was achieved, exceeding the threshold in over 92.9% of the pancreas. Additionally, different array placements within the same orientation were explored to address clinical challenges such as skin rash and patient anatomical variations. CONCLUSIONS: This research lays the groundwork for understanding TTFields distribution within the abdomen, offering insights into optimizing array configurations for improved electric field delivery. The findings have the potential to guide practical designs of TTFields devices, enhance treatment efficacy, and improve patient outcomes. These results offer promises of advancing TTFields therapy for pancreatic cancer towards clinical applications, and potentially enhancing treatment efficacy and patient outcomes.

2.
NMR Biomed ; 37(8): e5137, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38439522

ABSTRACT

Magnetic resonance electrical propert tomography promises to retrieve electrical properties (EPs) quantitatively and non-invasively in vivo, providing valuable information for tissue characterization and pathology diagnosis. However, its clinical implementation has been hindered by, for example, B1 measurement accuracy, reconstruction artifacts resulting from inaccuracies in underlying models, and stringent hardware/software requirements. To address these challenges, we present a novel approach aimed at accurate and high-resolution EPs reconstruction based on water content maps by using a physics-informed network (PIN-wEPT). The proposed method utilizes standard clinical protocols and conventional multi-channel receive arrays that have been routinely equipped in clinical settings, thus eliminating the need for specialized RF sequence/coil configurations. Compared with the original wEPT method, the network generates accurate water content maps that effectively eliminate the influence of B → 1 + and B → 1 - by incorporating data mismatch with electrodynamic constraints derived from the Helmholtz equation. Subsequent regression analysis develops a broad relationship between water content and EPs across various types of brain tissue. A series of numerical simulations was conducted at 7 T to assess the feasibility and performance of the method, which encompassed four normal head models and models with tumorous tissues incorporated, and the results showed normalized mean square error below 1.0% in water content, below 11.7% in conductivity, and below 1.1% in permittivity reconstructions for normal brain tissues. Moreover, in vivo validations conducted over five healthy subjects at both 3 and 7 T showed reasonably good consistency with empirical EPs values across the white matter, gray matter, and cerebrospinal fluid. The PIN-wEPT method, with its demonstrated efficacy, flexibility, and compatibility with current MRI scanners, holds promising potential for future clinical application.


Subject(s)
Magnetic Resonance Imaging , Tomography , Humans , Brain/diagnostic imaging , Physics , Phantoms, Imaging , Water/chemistry , Computer Simulation , Male , Female
3.
Phys Med Biol ; 67(19)2022 09 23.
Article in English | MEDLINE | ID: mdl-36067784

ABSTRACT

Objective. Improving the local uniformity ofB1+field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate's brain organization.Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkeyin vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5%B1+uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7Tin vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils' current density distribution andB1+uniformity, observing that it can be approximated as a sinusoidal curve.Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Animals , Equipment Design , Haplorhini , Magnetic Resonance Imaging/methods , Phantoms, Imaging
4.
Ecotoxicol Environ Saf ; 230: 113125, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34971997

ABSTRACT

OBJECTIVES: This study evaluated the associated biological effects of radio-frequency (RF) exposure at 16 T magnetic resonance imaging (MRI) on mice health. MATERIAL AND METHODS: A total of 48 healthy 8-week-old male C57BL/6 mice were investigated. A 16 T high static magnetic field (HiSMF) was generated by a superconducting magnet, and a radiofrequency (RF) electromagnetic field for hydrogen resonance at 16 T (700 MHz) was transmitted via a homemade RF system. The mice were exposed inside the 16 T HiSMF with the 700 MHz RF field for 60 min, and the body weight, organ coefficients, histomorphology of major organs, and blood indices were analyzed for the basal state of the mice on day 0 and day 14. The Heat Shock Protein 70 (HSP70), cyclooxygenase 2 (COX2), and interleukin- 6 (IL-6) were used to evaluate the thermal effects on the brain. Locomotor activity, the open field test, tail suspension test, forced swimming test, and grip strength test were used to assess the behavioral characteristics of the mice. RESULTS: The 16 T HiSMF with 700 MHz RF electromagnetic field exposure had no significant effects on body weight, organ coefficients, or histomorphology of major organs in the mice. On day 0, the expressions of HSP70 and COX2 in the brain were increased by 16 T HiSMF with 700 MHz RF electromagnetic field exposure. However, the expression of HSP70, COX2, and IL-6 had no significant difference compared with the sham group on day 14. Compared with the sham groups, the meancorpuscularvolume (MCV) on day 0 and the total protein (TP) on day 14 were increased significantly, whereas the other blood indices did not change significantly. The 16 T HiSMF with 700 MHz RF electromagnetic field exposure caused the mice to briefly circle tightly but had no effect on other behavioral indicators. CONCLUSIONS: In summary, 16 T HiSMF with 700 MHz RF electromagnetic field exposure for 60 min did not have severe effects on mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...