Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 45(6): 3247-3259, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897748

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) have received extensive attention as a new type of pollutant inin the 21st century, and the ecological and health risks caused by PPCPs have gradually been recognized by government regulatory agencies. Daily use of PPCPs has led to their frequent detection and high concentrations in the influent, effluent, and sludge of wastewater treatment plants, but traditional wastewater treatment processes can't remove them effectively. Most research about enhancing the removal of PPCPs through microbial degradation, photodegradation, and ozonation is still in the laboratory research stage, and the removal effects are not satisfactory when applied to actual sewage treatment. Therefore, the effective removal of PPCPs from domestic wastewater is a critical technical problem that urgently needs to be studied and solved in the coming years. At present, many scholars do not have a comprehensive understanding about the degradation and transformation behaviors of microbes, ultraviolet, and ozone for typical PPCPs in the wastewater treatment process, so it is necessary to conduct a systematic analysis and discussion. In this study, 16 typical PPCPs frequently detected in sewage treatment plants were selected as research objects through a literature review. The occurrence, removal characteristics, and sludge adsorption properties of typical PPCPs in wastewater treatment plants were analyzed and summarized. The degradation and transformation behavior of typical PPCPs under microbial, ultraviolet, and ozone treatments in the wastewater treatment process were also discussed. Finally, based on current research gaps, some research directions for the removal and transformation of PPCPs in wastewater were proposed:① investigation into the removal characteristics of PPCPs by actual biochemical treatment; ② study on the mechanism of microbial degradation and transformation of typical PPCPs during biochemical treatment; ③ study on the degradation and transformation mechanism of typical PPCPs by UV/ozone in an actual sewage system; and ④ research on the application technology of removing PPCPs from sewage via microbial degradation, photodegradation, ozone oxidation, etc. The relevant results of this study can provide a reference for the pollution control of typical PPCPs in the sewage treatment process.


Subject(s)
Cosmetics , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Pharmaceutical Preparations/analysis , Biodegradation, Environmental , Ozone/chemistry
2.
Huan Jing Ke Xue ; 44(4): 2158-2167, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040965

ABSTRACT

Microplastics (MPs) and estrogens are high-profile emerging contaminants at present, and MPs might become the carrier of estrogens in the environment and induce combined pollution. To study the adsorption behavior of polyethylene (PE) microplastics to typical estrogens, the adsorption isothermal properties of the six estrogens[estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), estriol (E3), diethylstilbestrol (DES), and ethinylestradiol (17α-EE2)] in single-solute and mixed-solute systems were studied through batch equilibrium adsorption experiments, in which the PE microplastics before and after adsorption were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Then, the site energy distribution theory of the adsorption of six estrogens on PE microplastics was further analyzed based on the Freundlich model. The results showed that the adsorption process of selected estrogens with two concentrations (100 µg·L-1 and 1000 µg·L-1) on PE were more consistent with the pseudo-second order kinetic model. The increase in initial concentration reduced the equilibrium time of adsorption and increased the adsorbing capacity of estrogens on PE. In the single system (one estrogen) or mixed system (six estrogens) with different concentrations (10 µg·L-1-2000 µg·L-1), the Freundlich model showed the best fitting effect for the adsorption isotherm data (R2>0.94). The results of isothermal adsorption experiments and XPS and FTIR spectra showed that the adsorption of estrogens on PE in the two systems was heterogeneous adsorption, and hydrophobic distribution and van der Waals forces were the principal factors in the process of adsorption. The occurrence of C-O-C (in only the DES and 17α-EE2 systems) and O-C[FY=,1]O (in only the 17α-EE2 system) indicated that the adsorption of synthetic estrogens on PE was affected slightly by chemical bonding function, but no obvious effects were observed for natural estrogens. The results of site energy distribution analysis showed that, compared with the single system, the adsorption site energy of each estrogen shifted to the high-energy region in its entirety in the mixed system, and the site energy increased by 2.15%-40.98%. The energy change in DES was the most significant among all of the estrogens, indicating its competitive advantage in the mixed system. The above results of this study can provide some reference for the study of adsorption behavior, mechanism of action, and environmental risks under the coexisting condition of organic pollutants and MPs.


Subject(s)
Estrogens , Microplastics , Estrogens/chemistry , Plastics , Estradiol , Ethinyl Estradiol/chemistry , Polyethylene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...