Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.999
Filter
2.
Adv Ther ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748333

ABSTRACT

Although aspirin is deeply rooted in the most ancient history of medicine, the mechanism of action of this drug was only identified a few decades ago. Aspirin has several indications ranging from its long-known analgesic and antipyretic properties to the more recently discovered antithrombotic, chemopreventive and anti-eclampsia actions. In addition, a recent line of research has identified aspirin as a drug with potential hepatologic indications. This article specifically focuses on the nonalcoholic fatty liver disease/nonalcoholic metabolic dysfunction fatty liver disease/metabolic dysfunction-associated steatotic liver disease (NAFLD/MAFLD/MASLD) field. To this end, the most recently published randomized controlled trial on aspirin for non-cirrhotic MASLD is summarized and discussed. Moreover, previous epidemiologic evidence supporting the notion that aspirin exerts antisteatotic and antifibrotic hepatic effects, which may result in the primary prevention of hepatocellular carcinoma, is also addressed. Next, the putative mechanisms involved are examined, with reference to the effects on adipose tissue and liver and sex differences in the action of aspirin. It is concluded that these novel findings on aspirin as a "hepatologic drug" deserve additional in-depth evaluation.


Although aspirin is part of the history of medicine, its mechanism of action was only discovered a few decades ago. Aspirin can be used to treat pain, fever, inflammation and conditions where the blood tends to clot excessively (hypercoagulate) as well as for the prevention of certain types of cancer. Additionally, recent research has identified potential hepatologic indications and beneficial actions of aspirin among the so-called fatty liver disorders owing to conditions which disrupt the body's regular metabolic functions and disorders (such as obesity and diabetes). This article discusses a recently published study while also addressing previous studies supporting the notion that aspirin might have pharmacologic action against fatty liver and its progression to scarring tissue (liver fibrosis and hepatic cirrhosis) and prevent the most common type of primary liver cancer. Aspirin not only acts on the blood cells that protect against hemorrhage (i.e., the platelets) but also targets other tissues such as adipose tissue and the liver. Importantly, biologic sex may affect the pharmacologic action of aspirin. Collectively, the discoveries summarized in our article justify additional investigations into aspirin as a "novel" drug in the hepatologic field.

3.
J ISAKOS ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754838

ABSTRACT

OBJECTIVES: Autologous tendon cell implantation (OrthoATI™) therapy has demonstrated efficacy in treating patients with tendinopathy at various anatomical sites. This study evaluates the effect of patient age, gender and tendon biopsy site on morphology, growth and gene expression of autologous tendon cells used to treat chronic tendinopathy. METHODS: Patients undergoing OrthoATI™ for tendinopathies between 2020 and 2022 were initially treated by biopsies taken from patella tendon (PT) or palmaris longus tendon (PL). Autologous tenocytes were treated at a Good Manufacturing Practice (GMP) cell laboratory where they were isolated, cultured and expanded for four to six weeks. Cell morphology was assessed using phase contrast microscopy. Droplet digital PCR (ddPCR) was utilised for gene expression analysis. Dichotomous results were compared between groups using x2 or Fisher's exact tests with no adjustment for multiple comparisons. The non-parametric Mann-Whitney U and Kruskal-Wallis tests were utilised for the sex and age (<35y, 35-44y, 45-54y, >55y) analyses respectively. All analyses were performed using IBM SPSS v27, and a two-tailed P-value of <0.05 was considered statistically significant. RESULTS: 149 patients were included in the analysis. The PT was biopsied in 63 patients, and PL in 86 patients. There were no observer effects for age and gender between PT and PL groups. There was no statistical significance between the PT and PL tendons for cell morphology, average cell population doubling time (PDT) (PT 83.9 vs PL 82.7 hours, p=0.482), cellular yield (PT 16.2 vs PL 15.2×106 , p=0.099), and cell viability (PT 98.7 vs PL 99.0%, p=0.277). Additionally, ddPCR analyses showed no statistical significance found in tenogenic gene expression including collagen type I (COL1, p=0.86), tenomodulin (TNMD, p=0.837) and scleraxis (SCX, p=0.331) between PT- and PL-derived tendon cells. An age stratification analysis found no effect on growth and gene expression. COL1 was found to be higher in males when compared to females (P<0.001), but otherwise no difference was seen in growth and gene expression in the gender analysis. No post-biopsy clinical complications were reported for either group. CONCLUSION: This study has shown that the growth and bioactivities of tendon cells from tendon biopsies for OrthoATI™ are not affected by tendon donor site and age. LEVEL OF EVIDENCE: IV.

5.
Talanta ; 276: 126282, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788382

ABSTRACT

Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTS●+ without using H2O2. Under optimum conditions, the ABTS●+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTS●+. The ultrarobust stable ABTS●+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 µM, respectively. This study provides a facile way to prepare ultrarobust stable ABTS●+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.

6.
Nature ; 629(8012): 579-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38750235

ABSTRACT

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory-memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.

7.
Angew Chem Int Ed Engl ; : e202407127, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818628

ABSTRACT

A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-ß-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.

8.
Neuropharmacology ; 255: 110001, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38750804

ABSTRACT

Emerging evidence suggests an important role of astrocytes in mediating behavioral and molecular effects of commonly misused drugs. Passive exposure to nicotine alters molecular, morphological, and functional properties of astrocytes. However, a potential involvement of astrocytes in nicotine reinforcement remains largely unexplored. The overall hypothesis tested in the current study is that astrocytes play a critical role in nicotine reinforcement. Protein levels of the astrocyte marker glial fibrillary acidic protein (GFAP) were examined in key mesocorticolimbic regions following chronic nicotine intravenous self-administration. Fluorocitrate, a metabolic inhibitor of astrocytes, was tested for its effects on behaviors related to nicotine reinforcement and relapse. Effects of fluorocitrate on extracellular neurotransmitter levels, including glutamate, GABA, and dopamine, were determined with microdialysis. Chronic nicotine intravenous self-administration increased GFAP expression in the nucleus accumbens core (NACcr), but not other key mesocorticolimbic regions, compared to saline intravenous self-administration. Both intra-ventricular and intra-NACcr microinjection of fluorocitrate decreased nicotine self-administration. Intra-NACcr fluorocitrate microinjection also inhibited cue-induced reinstatement of nicotine seeking. Local perfusion of fluorocitrate decreased extracellular glutamate levels, elevated extracellular dopamine levels, but did not alter extracellular GABA levels in the NACcr. Fluorocitrate did not alter basal locomotor activity. These results indicate that nicotine reinforcement upregulates the astrocyte marker GFAP expression in the NACcr, metabolic inhibition of astrocytes attenuates nicotine reinforcement and relapse, and metabolic inhibition of astrocytes disrupts extracellular dopamine and glutamate transmission. Overall, these findings suggest that astrocytes play an important role in nicotine reinforcement and relapse, potentially through regulation of extracellular glutamate and dopamine neurotransmission.


Subject(s)
Astrocytes , Citrates , Dopamine , Glutamic Acid , Nicotine , Nucleus Accumbens , Rats, Wistar , Self Administration , Animals , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Nicotine/pharmacology , Nicotine/administration & dosage , Male , Glutamic Acid/metabolism , Dopamine/metabolism , Citrates/pharmacology , Citrates/administration & dosage , Rats , Glial Fibrillary Acidic Protein/metabolism , Nicotinic Agonists/pharmacology , Nicotinic Agonists/administration & dosage , Microdialysis , Reinforcement, Psychology , gamma-Aminobutyric Acid/metabolism
10.
Adv Mater ; : e2313749, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578135

ABSTRACT

Developing coordination complexes (such as metal-organic frameworks, MOFs) with circularly polarized luminescence (CPL) is currently attracting tremendous attention and remains a significant challenge in achieving MOF with circularly polarized afterglow. Herein, MOFs-based circularly polarized afterglow is first reported by combining the chiral induction approach and tuning the afterglow times by using the auxiliary ligands regulation strategy. The obtained chiral R/S-ZnIDC, R/S-ZnIDC(bpy), and R/S-ZnIDC(bpe)(IDC = 1H-Imidazole-4,5-dicarboxylate, bpy = 4,4'-Bipyridine, bpe = trans-1,2-Bis(4-pyridyl) ethylene) containing a similar structure unit display different afterglow times with 3, 1, and <0.1 s respectively which attribute to that the longer auxiliary ligand hinders the energy transfer through the hydrogen bonding. The obtained chiral complexes reveal a strong chiral signal, obvious photoluminescence afterglow feature, and strong CPL performance (glum up to 3.7 × 10-2). Furthermore, the photo-curing 3D printing method is first proposed to prepare various chiral MOFs based monoliths from 2D patterns to 3D scaffolds for anti-counterfeiting and information encryption applications. This work not only develops chiral complexes monoliths by photo-curing 3D printing technique but opens a new strategy to achieve tunable CPL afterglow in optical applications.

11.
Hepatol Int ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594474

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. In recent years, a new terminology and definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed. Compared to the NAFLD definition, MAFLD better emphasizes the pathogenic role of metabolic dysfunction in the development and progression of this highly prevalent condition. Metabolic disorders, including overweight/obesity, type 2 diabetes mellitus (T2DM), atherogenic dyslipidemia and hypertension, are often associated with systemic organ dysfunctions, thereby suggesting that multiple organ damage can occur in MAFLD. Substantial epidemiological evidence indicates that MAFLD is not only associated with an increased risk of liver-related complications, but also increases the risk of developing several extra-hepatic diseases, including new-onset T2DM, adverse cardiovascular and renal outcomes, and some common endocrine diseases. We have summarized the current literature on the adverse effect of MAFLD on the development of multiple extrahepatic (cardiometabolic and endocrine) complications and examined the role of different metabolic pathways and organ systems in the progression of MAFLD, thus providing new insights into the role of MAFLD as a multisystem metabolic disorder. Our narrative review aimed to provide insights into potential mechanisms underlying the known associations between MAFLD and extrahepatic diseases, as part of MAFLD as a multisystem disease, in order to help focus areas for future drug development targeting not only liver disease but also the risk of extrahepatic complications.

12.
Phys Rev E ; 109(3-2): 035204, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632729

ABSTRACT

During the ultraintense laser interaction with solids (overdense plasmas), the competition between two possible quantum electrodynamics (QED) mechanisms responsible for e^{±} pair production, i.e., linear and nonlinear Breit-Wheeler (BW) processes, remains to be studied. Here, we have implemented the linear BW process via a Monte Carlo algorithm into the QED particle-in-cell (PIC) code yunic, enabling us to self-consistently investigate both pair production mechanisms in the plasma environment. By a series of two-dimensional QED-PIC simulations, the transition from the linear to the nonlinear BW process is observed with the increase of laser intensities in the typical configuration of a linearly polarized laser interaction with solid targets. A critical normalized laser amplitude about a_{0}∼400-500 is found under a large range of preplasma scale lengths, below which the linear BW process dominates over the nonlinear BW process. This work provides a practicable technique to model linear QED processes via integrated QED-PIC simulations. Moreover, it calls for more attention to be paid to linear BW pair production in near future 10-PW-class laser-solid interactions.

13.
J Bone Miner Res ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624186

ABSTRACT

BACKGROUND: The relationship between socio-economic status and bone-related diseases is attracting increasing attention. Therefore, a bidirectional Mendelian randomization (MR) analysis was performed in this study. METHODS: Genetic data on factors associated with socio-economic status (average total household income before tax, years of schooling completed and Townsend Deprivation Index at recruitment), femoral neck bone mineral density (FN-BMD), heel bone mineral density (eBMD), osteoporosis, and five different sites of fracture (spine, femur, lower leg-ankle, foot, and wrist-hand fractures) were derived from genome-wide association summary statistics of European ancestry. The inverse variance weighted method was employed to obtain the causal estimates, complemented by alternative MR techniques, including MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO). Furthermore, sensitivity analyses, and multivariable MR was performed to enhance the robustness of our findings. RESULTS: A higher educational attainment was associated with an increased level of eBMD (beta:0.06, 95% CI:0.01-0.10, P = 7.24 × 10-3), and decreased risk of osteoporosis (OR:0.78, 95% CI:0.65-0.94, P = 8.49 × 10-3), spine fracture (OR:0.76, 95% CI:0.66-0.88, P = 2.94 × 10-4), femur fracture (OR:0.78, 95% CI:0.67-0.91, P = 1.33 × 10-3), lower leg-ankle fracture (OR:0.79, 95% CI:0.70-0.88, P = 2.05 × 10-5), foot fracture (OR:0.78, 95% CI:0.66-0.93, P = 5.92 × 10-3) and wrist-hand fracture (OR:0.83, 95% CI:0.73-0.95, P = 7.15 × 10-3). Further, material deprivation seemed to harm the spine fracture (OR:2.63, 95% CI:1.43-4.85, P = 1.91 × 10-3). A higher level of FN-BMD positively affected increased household income (beta:0.03, 95% CI:0.01-0.04, P = 6.78 × 10-3). All these estimates were adjusted for body mass index (BMI), type 2 diabetes, smoking initiation, and frequency of alcohol intake. CONCLUSIONS: The Mendelian randomization analyses show that higher educational levels is associated with higher eBMD, reduced risk of osteoporosis and fractures, while material deprivation is positively related to spine fracture. Enhanced FN-BMD correlates with increased household income. These findings offer valuable insights into the formulation of health guidelines and policy development.


We conducted stratified analyses to explore the causal links between socio-economic status and osteoporosis and various fractures and observed that education significantly reduced risk of osteoporosis and lower eBMD. It also lowered the risks of fractures of spine, femur, lower leg-ankle, foot, and wrist-hand, while material deprivation exhibited positive associations with spine fracture risk. Bidirectional MR analysis showed that an elevated score of FN-BMD was associated with a higher income level. Our study shows the importance of conducting routine BMD estimations and osteoporosis screening, to enhance knowledge and awareness among individuals to promote bone health and prevent fractures.

14.
J Agric Food Chem ; 72(15): 8784-8797, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38566473

ABSTRACT

Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), Tenebrio molitor protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.5%) > WPI (9.3%) > TMP (8.9%) > YP (8.0%) > SPI (7.6%), which was consistent with the sequence of binding affinity between Myr and different proteins. Among five protein hydrogels, EDP had an optimum loading ability since it possessed the highest hydrophobic amino acid content (45.52%) and thus provided a broad hydrophobic cavity for loading Myr. In addition, these protein-Myr composite hydrogels displayed the core-shell structure, wherein hydrogen bonding and hydrophobic interaction were the primary binding forces between proteins and Myr. Moreover, the thermal stability, storage stability, and sustained-release properties of Myr were significantly enhanced via these protein delivery systems. These findings can provide scientific guidance for deeper utilization of food alternative protein sources.


Subject(s)
Flavonoids , Micelles , Flavonoids/chemistry , Hydrogels
15.
Liver Int ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578141

ABSTRACT

The rising prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant global health challenge, affecting over 30% of adults worldwide. MASLD is linked to increased mortality rates and substantial healthcare costs, primarily driven by its progression to metabolic dysfunction-associated steatohepatitis (MASH), which can lead to severe liver complications including cirrhosis and hepatocellular carcinoma. Despite its growing burden, effective pharmacotherapy for MASLD/MASH has been lacking until the recent conditional approval of resmetirom by the FDA. Resmetirom, a liver-targeted thyroid hormone receptor-ß selective drug, has shown promise in clinical trials for treating non-cirrhotic MASH with moderate to advanced fibrosis. It has demonstrated efficacy in reducing hepatic fat content, improving liver histology (both MASH resolution and fibrosis improvement), and ameliorating biomarkers of liver damage without significant effects on body weight or glucose metabolism. Notably, resmetirom also exhibits favourable effects on circulating lipids, potentially reducing cardiovascular risk in MASLD/MASH patients. The safety profile of resmetirom appears acceptable, with gastrointestinal adverse events being the most common, though generally mild or moderate. However, long-term surveillance is warranted to monitor for potential risks related to thyroid, gonadal, or bone diseases. Clinical implementation of resmetirom faces challenges in patient selection and monitoring treatment response, and will heavily rely on non-invasive tests for liver fibrosis assessment. Nonetheless, resmetirom represents a landmark breakthrough in MASLD/MASH treatment, paving the way for future therapeutic strategies aiming to mitigate the multifaceted risks associated with this complex metabolic liver disease.

16.
17.
Obes Rev ; 25(6): e13740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38571458

ABSTRACT

Exosomes are extracellular vesicles, measuring 40-160 nm in diameter, that are released by many cell types and tissues, including adipose tissue. Exosomes are critical mediators of intercellular communication and their contents are complex and diverse. In recent years, accumulating evidence has proved that multiple adipose tissue-derived exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), play pivotal roles in the pathogenesis of diverse metabolic diseases, such as obesity. In this narrative review, we focus on the adipose tissue-derived exosomal ncRNAs, especially exosomal miRNAs, and their dysregulation in multiple types of metabolic diseases. A deeper understanding of the role of adipose tissue-derived exosomal ncRNAs may help provide new diagnostic and treatment methods for metabolic diseases.


Subject(s)
Adipose Tissue , Exosomes , Metabolic Diseases , RNA, Untranslated , Humans , Exosomes/metabolism , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Adipose Tissue/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/physiology , Animals
18.
Cell ; 187(11): 2717-2734.e33, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38653239

ABSTRACT

The gut microbiota has been found to play an important role in the progression of metabolic dysfunction-associated steatohepatitis (MASH), but the mechanisms have not been established. Here, by developing a click-chemistry-based enrichment strategy, we identified several microbial-derived bile acids, including the previously uncharacterized 3-succinylated cholic acid (3-sucCA), which is negatively correlated with liver damage in patients with liver-tissue-biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). By screening human bacterial isolates, we identified Bacteroides uniformis strains as effective producers of 3-sucCA both in vitro and in vivo. By activity-based protein purification and identification, we identified an enzyme annotated as ß-lactamase in B. uniformis responsible for 3-sucCA biosynthesis. Furthermore, we found that 3-sucCA is a lumen-restricted metabolite and alleviates MASH by promoting the growth of Akkermansia muciniphila. Together, our data offer new insights into the gut microbiota-liver axis that may be leveraged to augment the management of MASH.


Subject(s)
Akkermansia , Bacteroides , Bile Acids and Salts , Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Symbiosis , Animals , Humans , Male , Mice , Akkermansia/metabolism , Bacteroides/metabolism , beta-Lactamases/metabolism , Bile Acids and Salts/metabolism , Biosynthetic Pathways/genetics , Fatty Liver/metabolism , Liver/metabolism , Mice, Inbred C57BL , Verrucomicrobia/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology
19.
Angew Chem Int Ed Engl ; 63(17): e202319529, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38443734

ABSTRACT

Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...