Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(19): 3099-3108, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38695127

ABSTRACT

The CRISPR-Cas system has been found to be extremely sensitive and there is an urgent demand to extend its potential in bioassays. Herein, we developed a novel nanobiosensor to detect the human papillomavirus 16 genes (HPV-16 DNA), which is triggered by CRISPR-Cas12a to amplify the fluorescence signal by metal-enhanced fluorescence (CAMEF). Along with the changing of the fluorescence signal, the aggregation of the substrate of MEF also leads to a change in the color of the mixture solution, enabling dual signal detection with the fluorescence and the naked eye. Furthermore, the designed CAMEF probe was verified to detect the HPV-16 DNA accurately and reliably in biological samples. Triggered by the CRISPR system, the designed CAMEF probe allows quantitative detection of the HPV-16 DNA in the wide range of 10-500 pM. Owing to the MEF, the fluorescence signal of the CAMEF probe was significantly amplified with the detection limit as low as 1 pM. Besides, we can determine the concentration of HPV-16 DNA simply by the naked eye, which also drastically reduces the possibility of false-positive signals. Theoretically, the target ssDNA could be any strand of DNA obtained by designing the crRNA sequence in the CRISPR-Cas system. We believe that the designed CAMEF sensor can present a reliable approach for the accurate detection of low amounts of target ssDNA in complex biological samples.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Colorimetry , DNA, Viral , Human papillomavirus 16 , CRISPR-Cas Systems/genetics , Human papillomavirus 16/genetics , Colorimetry/methods , Humans , DNA, Viral/analysis , DNA, Viral/genetics , Biosensing Techniques/methods , Limit of Detection , Fluorescence , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods
2.
ACS Sens ; 7(5): 1572-1580, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35482449

ABSTRACT

Although great headway has been made in DNAzyme-based detection of Pb2+, its adaptability, sensitivity, and accessibility in complex media still need to be improved. For this, we introduce new ways to surmount these hurdles. First, a spherical nucleic acid (SNA) fluorescence probe (Au nanoparticles-DNAzyme probe) is utilized to specifically identify Pb2+ and its suitability for precise detection of Pb2+ in complex samples due to its excellent nuclease resistance. Second, the sensitivity of Pb2+ detection is greatly enhanced via the use of a clustered regularly interspaced short palindromic repeats-Cas12a with target recognition accuracy to amplify the fluorescent signal upon the trans cleavage of the SNA (signal probe), and the limit of detection reaches as low as 86 fM. Third, we boost the fluorescence on photonic crystal chips with a bionic periodic arrangement by employing a straightforward detection device (smartphone and portable UV lamp) to achieve on-site detection of Pb2+ with the limit of detection as low as 24 pM. Based on the abovementioned efforts, the modified Pb2+ fluorescence sensor has the advantages of higher sensitivity, better specificity, accessibility, less sample consumption, and so forth. Moreover, it can be applied to accurately detect Pb2+ in complex biological or environmental samples, which is of great promise for widespread applications.


Subject(s)
DNA, Catalytic , Metal Nanoparticles , CRISPR-Cas Systems , Gold , Lead
3.
Anal Chem ; 93(37): 12514-12523, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34490773

ABSTRACT

Despite that the currently discovered CRISPR-Cas12a system is beneficial for improving the detection accuracy and design flexibility of luminescent biosensors, there are still challenges to extend target species and strengthen adaptability in complicated biological media. To conquer these obstacles, we present here some useful strategies. For the former, the limitation to nucleic acids assay is broken through by introducing a simple functional DNA regulation pathway to activate the unique trans-cleavage effect of this CRISPR system, under which the expected biosensors are capable of effectively transducing a protein (employing dual aptamers) and a metal ion (employing DNAzyme). For the latter, a time-gated luminescence resonance energy transfer imaging manner using a long-persistent nanophosphor as the energy donor is performed to completely eliminate the background interference and a nature-inspired biomimetic periodic chip constructed by photonic crystals is further combined to enhance the persistent luminescence. In line with the above efforts, the improved CRISPR-Cas12a luminescent biosensor not only exhibits a sound analysis performance toward the model targets (carcinoembryonic antigen and Na+) but also owns a strong anti-interference feature to actualize accurate sensing in human plasma samples, offering a new and applicative analytical tool for laboratory medicine.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Biomimetics , CRISPR-Cas Systems/genetics , DNA/genetics , Humans , Luminescence
4.
Biosens Bioelectron ; 169: 112650, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32987327

ABSTRACT

Apart from gene editing capacity, the newly discovered CRISPR/Cas systems offer an exciting option for biosensing field because of their excellent target recognition accuracy. However, the currently constructed sensors are not only limited to nucleic acid analysis but also suffer from poor adaptability in complex samples and unsatisfying sensitivity. We herein introduce some advanced concepts to break through these bottlenecks. First, the sensing targets are extended by skillfully designing a functional DNA such as aptamer (for protein) and DNAzyme (for metal ion) to regulate the transduction of non-nucleic acid species and further activate the trans cleavage of CRISPR/Cas12a. Second, a boosting upconversion luminescent resonance energy is triggered by using a peculiar energy-confining notion, whereby the luminescence domain is intensively restricted in a very narrow space (~2.44 nm) and up to 92.9% of the green emission can be quenched by the approaching BHQ-1 modified reporters. Third, a bio-inspired periodic arrangement biomimetic chip (photonic crystal) is employed to selectively reflect the upconversion luminescence to achieve noteworthy signal enhancement (~35-fold). By utilizing very simple detection devices (a 980 nm portable laser and a smartphone), the CRISPR/Cas12a biosensor shows commendable sensitivity and specificity toward model targets (ATP and Na+, limits of detection are ~ 18 nM and ~0.37 µM, respectively). More importantly, the analysis of real complex samples demonstrate that the as-proposed platform can work as a powerful toolbox for monitoring the ATP fluctuation in single cell and point-of-care testing Na+ in human plasma, enabling a broad application prospect.


Subject(s)
Biosensing Techniques , Clustered Regularly Interspaced Short Palindromic Repeats , Biomimetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , DNA/genetics , Humans
5.
Anal Chem ; 91(12): 7950-7957, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31117416

ABSTRACT

Herein, a conceptual approach for significantly enhancing a bead-supported assay is proposed. For the fluorescence imaging technology, optical tweezers are introduced to overcome the fluid viscosity interference and immobilize a single tested bead at the laser focus to guarantee a fairly precise imaging condition. For the selection of fluorescent materials and the signal acquisition means, a type of innovative luminescence confined upconversion nanoparticle with a unique sandwich structure is specially designed to act as an efficient energy donor to trigger the luminescent resonance energy transfer (LRET) process. By further combining the double breakthrough with a molecular beacon model, the newly developed detection strategy allows for achieving a pretty high LRET ratio (≈ 88%) to FAM molecules and offering sound assay performance toward miRNA analysis with a detection limit as low as the sub-fM level, and is capable of well identifying single-base mismatching. Besides, this approach not only is able to accurately qualify the low-abundance targets from as few as 30 cancer cells but also can be employed as a valid cancer early warning tool for performing liquid biopsy.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Luminescence , Microspheres , Nanoparticles/chemistry , Optical Imaging/methods , Optical Tweezers , Cell Line, Tumor , Humans , Oleic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...