Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; : e0361122, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786562

ABSTRACT

The environmentally friendly biological control strategy that relies on beneficial bacterial inoculants to improve plant disease resistance is a promising strategy. Previously, it has been demonstrated that biocontrol bacteria treatments can change the plant rhizosphere microbiota but whether plant signaling pathways, especially those related to disease resistance, mediate the changes in rhizosphere microbiota has not been explored. Here, we investigated the complex interplay among biocontrol strains, plant disease resistance-related pathways, root exudates, rhizosphere microorganisms, and pathogens to further clarify the biocontrol mechanism of biocontrol bacteria by using plant signaling pathway mutants. Bacillus cereus AR156, which was previously isolated from forest soil by our laboratory, can significantly control tomato bacterial wilt disease in greenhouse and field experiments. Moreover, compared with the control treatment, the B. cereus AR156 treatment had a significant effect on the soil microbiome and recruited 35 genera of bacteria to enrich the rhizosphere of tomato. Among them, the relative rhizosphere abundance of nine genera, including Ammoniphilus, Bacillus, Bosea, Candidimonas, Flexivirga, Brevundimonas, Bordetella, Dyella, and Candidatus_Berkiella, was regulated by plant disease resistance-related signaling pathways and B. cereus AR156. Linear correlation analysis showed that the relative abundances of six genera in the rhizosphere were significantly negatively correlated with pathogen colonization in roots. These rhizosphere bacteria were affected by plant root exudates that are regulated by signaling pathways. IMPORTANCE Our data suggest that B. cereus AR156 can promote the enrichment of beneficial microorganisms in the plant rhizosphere by regulating salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways in plants, thereby playing a role in controlling bacterial wilt disease. Meanwhile, Spearman correlation analysis showed that the relative abundances of these beneficial bacteria were correlated with the secretion of root exudates. Our study reveals a new mechanism for SA and JA/ET signals to participate in the adjustment of plant resistance whereby the signaling pathways adjust the rhizosphere microecology by changing the root exudates and thus change plant resistance. On the other hand, biocontrol strains can utilize this mechanism to recruit beneficial bacteria by activating disease resistance-related signaling pathways to confine the infection and spread of pathogens. Finally, our data also provide a new idea for the in-depth study of biocontrol mechanisms.

2.
Mol Plant Pathol ; 21(6): 854-870, 2020 06.
Article in English | MEDLINE | ID: mdl-32227587

ABSTRACT

Small RNAs play an important role in plant innate immunity. However, their regulatory function in induced systemic resistance (ISR) triggered by plant growth-promoting rhizobacteria remains unclear. Here, using Arabidopsis as a model system, one plant endogenous small RNA, miR472, was identified as an important regulator involved in the process of Bacillus cereus AR156 ISR against Pseudomonas syringae pv. tomato (Pst) DC3000. The results revealed that miR472 was down-regulated with B. cereus AR156 treatment by comparing small RNA profiles and northern blot analysis of Arabidopsis with or without B. cereus AR156 treatment. Plants overexpressing miR472 showed higher susceptibility to Pst DC3000; by contrast, plant lines with miR472 knocked down/out showed the opposite. The transcriptome sequencing revealed thousands of differentially expressed genes in the transgenic plants. Target prediction showed that miR472 targets lots of coiled coil nucleotide-binding site (NBS) and leucine-rich repeat (LRR) type resistance genes and the expression of these targets was negatively correlated with the expression of miR472. In addition, transgenic plants with knocked-out target genes exhibited decreased resistance to Pst DC3000 invasion. Quantitative reverse transcription PCR results indicated that target genes of miR472 were expressed during the process of B. cereus AR156-triggered ISR. Taken together, our results demonstrate that the miR472-mediated silencing pathway is an important regulatory checkpoint occurring via post-transcriptional control of NBS-LRR genes during B. cereus AR156-triggered ISR in Arabidopsis.


Subject(s)
Arabidopsis/microbiology , Bacillus cereus/physiology , MicroRNAs/genetics , Plant Diseases/microbiology , Plant Immunity/genetics , Pseudomonas syringae/physiology , Solanum lycopersicum/microbiology , Arabidopsis/genetics , Arabidopsis/immunology , Down-Regulation , Gene Knockdown Techniques , Gene Knockout Techniques , Plant Diseases/immunology , Plants, Genetically Modified , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...