Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1437: 23-35, 2024.
Article in English | MEDLINE | ID: mdl-38270851

ABSTRACT

Organisms live in a dynamic environment in which sensory information from multiple sources is ever changing. A conceptually complex task for the organisms is to accumulate evidence across sensory modalities and over time, a process known as multisensory decision-making. This is a new concept, in terms of that previous researches have been largely conducted in parallel disciplines. That is, much efforts have been put either in sensory integration across modalities using activity summed over a duration of time, or in decision-making with only one sensory modality that evolves over time. Recently, a few studies with neurophysiological measurements emerge to study how different sensory modality information is processed, accumulated, and integrated over time in decision-related areas such as the parietal or frontal lobes in mammals. In this review, we summarize and comment on these studies that combine the long-existed two parallel fields of multisensory integration and decision-making. We show how the new findings provide insight into our understanding about neural mechanisms mediating multisensory information processing in a more complete way.


Subject(s)
Cognition , Frontal Lobe , Animals , Mammals
2.
Cryobiology ; 114: 104794, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37981093

ABSTRACT

Beijing You Chicken, a valuable local chicken breed from Beijing, China, was once listed as an endangered breed. From the point of view of conservation, the preservation of this breed is an important task for the local researchers. Semen cryopreservation is a popular method to maintain valuable species. However, during cryopreservation, semen is susceptible to oxidative damage. Melatonin is a potent antioxidant and free radical scavenger, so it has been selected to improve the efficiency of sperm cryopreservation. In this study, the chicken semen was treated with different concentrations of melatonin in the cryopreservation solution. The results showed that melatonin at concentrations of 10-3 M and 10-5 M significantly improved sperm progressive motility and total motility, respectively, compared to the control (P < 0.05). Melatonin at 10-3 M also significantly improved the plasma membrane and acrosome integrity of spermatozoa compared to the control. The mechanisms are that melatonin significantly reduces the level of ROS and preserves sperm mitochondrial membrane potential. Most importantly, the melatonin-treated cryopreserved chicken sperm after artificial insemination significantly increased the hatching rate of chicks compared to the control (p < 0.05). The results show that melatonin has a positive effect on the quality of the cryopreserved spermatozoa. These results provide the theoretical and practical basis for using melatonin to improve Beijing You Chicken conservation, and they may also be applicable to poultry as a whole.


Subject(s)
Melatonin , Semen Preservation , Male , Animals , Chickens , Melatonin/pharmacology , Cryopreservation/methods , Semen , Beijing , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism , Semen Preservation/veterinary , Semen Preservation/methods , Spermatozoa , Sperm Motility , Semen Analysis
3.
Cell Rep ; 37(7): 109999, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34788608

ABSTRACT

Precise heading perception requires integration of optic flow and vestibular cues, yet the two cues often carry distinct temporal dynamics that may confound cue integration benefit. Here, we varied temporal offset between the two sensory inputs while macaques discriminated headings around straight ahead. We find the best heading performance does not occur under natural condition of synchronous inputs with zero offset but rather when visual stimuli are artificially adjusted to lead vestibular by a few hundreds of milliseconds. This amount exactly matches the lag between the vestibular acceleration and visual speed signals as measured from single-unit-activity in frontal and posterior parietal cortices. Manually aligning cues in these areas best facilitates integration with some nonlinear gain modulation effects. These findings are consistent with predictions from a model by which the brain integrates optic flow speed with a faster vestibular acceleration signal for sensing instantaneous heading direction during self-motion in the environment.


Subject(s)
Motion Perception/physiology , Optic Flow/physiology , Postural Balance/physiology , Animals , Brain/physiology , Cues , Ear, Inner/physiology , Macaca mulatta , Male , Parietal Lobe/physiology , Photic Stimulation , Vestibule, Labyrinth/physiology , Visual Perception/physiology
4.
Neuron ; 104(5): 1010-1021.e10, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31607423

ABSTRACT

Perceptual decisions are often based on multiple sensory inputs whose reliabilities rapidly vary over time, yet little is known about how the brain integrates these inputs to optimize behavior. The optimal solution requires that neurons simply add their sensory inputs across time and modalities, as long as these inputs are encoded with an invariant linear probabilistic population code (ilPPC). While this theoretical possibility has been raised before, it has never been tested experimentally. Here, we report that neural activities in the lateral intraparietal area (LIP) of macaques performing a vestibular-visual multisensory decision-making task are indeed consistent with the ilPPC theory. More specifically, we found that LIP accumulates momentary evidence proportional to the visual speed and the absolute value of vestibular acceleration, two variables that are encoded with close approximations to ilPPCs in sensory areas. Together, these results provide a remarkably simple and biologically plausible solution to near-optimal multisensory decision making.


Subject(s)
Decision Making/physiology , Models, Neurological , Motion Perception/physiology , Parietal Lobe/physiology , Animals , Macaca mulatta , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...