Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(10): 16743-16753, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157747

ABSTRACT

Manipulation of ultracold atoms in optical lattices is one of the optimal ways to observe phase transitions of the Hubbard model which is useful in a variety of condensed-matter systems. Bosonic atoms in this model experience a phase transition from superfluids to Mott insulators by tuning systematic parameters. However, in conventional setups, phase transitions take place over a large range of parameters instead of one critical point due to the background inhomogeneity caused by the Gaussian shape of optical-lattice lasers. To probe the phase transition point more precisely in our lattice system, we apply a blue-detuned laser to compensate for this local Gaussian geometry. By inspecting the change of visibility, we find a sudden jump point at one particular trap depth of optical lattices, corresponding to the first appearance of Mott insulators in inhomogeneous systems. This provides a simple method to detect the phase transition point in such inhomogeneous systems. We believe it will be a useful tool for most cold atom experiments.

2.
Sci Bull (Beijing) ; 67(24): 2550-2556, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36604033

ABSTRACT

Ramping a physical parameter is one of the most common experimental protocols in studying a quantum system, and ramping dynamics has been widely used in preparing a quantum state and probing physical properties. Here, we present a novel method of probing quantum many-body correlation by ramping dynamics. We ramp a Hamiltonian parameter to the same target value from different initial values and with different velocities, and we show that the first-order correction on the finite ramping velocity is universal and path-independent, revealing a novel quantum many-body correlation function of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response since this is the leading order correction beyond the adiabatic limit. We demonstrate this method experimentally by studying the Bose-Hubbard model with ultracold atoms in three-dimensional optical lattices. Unlike the conventional linear response that reveals whether the quasi-particle dispersion of a quantum phase is gapped or gapless, this probe is more sensitive to whether the quasi-particle lifetime is long enough such that the quantum phase possesses a well-defined quasi-particle description. In the Bose-Hubbard model, this non-adiabatic linear response is significant in the quantum critical regime where well-defined quasi-particles are absent. And in contrast, this response is vanishingly small in both superfluid and Mott insulators which possess well-defined quasi-particles. Because our proposal uses the most common experimental protocol, we envision that our method can find broad applications in probing various quantum systems.

3.
Phys Rev Lett ; 127(20): 200601, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34860061

ABSTRACT

Quantum critical behavior of many-body phase transitions is one of the most fascinating yet challenging questions in quantum physics. Here, we improved the band-mapping method to investigate the quantum phase transition from superfluid to Mott insulators, and we observed the critical behaviors of quantum phase transitions in both the dynamical steady-state-relaxation region and the phase-oscillation region. Based on various observables, two different values for the same quantum critical parameter are observed. This result is beyond a universal-scaling-law description of quantum phase transitions known as the Kibble-Zurek mechanism, and suggests that multiple quantum critical mechanisms are competing in many-body quantum phase transition experiments in inhomogeneous systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...