Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Heliyon ; 10(11): e31729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867990

ABSTRACT

We present an AIDS patient coinfected with Cytomegalovirus, Pneumocystis jirovecii pneumonia, nontuberculous mycobacteria, and COVID-19, who finally recovered from the coinfection. The 36-year-old man had two hospitalizations. In the first hospitalization, the patient was diagnosed with Cytomegalovirus, Pneumocystis jirovecii pneumonia, HIV, and COVID-19 quickly and accurately, and the corresponding treatment worked well. The second hospitalization can be divided into four stages: (1) Persistent fever period; (2) Persistent fever and Pulmonary Progression; (3) ICU period; and (4) Pneumothorax period. During the second hospitalization, the diagnosis of Mycobacterium colombiense was hard because the NGS, acid-fast bacilli, and culture of vomit, sputum, and bronchoalveolar lavage fluid were all negative. Still, we detected acid-fast bacilli in the blood mycobacterium culture. In conclusion, we report a severe pneumonia AIDS patient coinfected with Cytomegalovirus, Pneumocystis jirovecii pneumonia, COVID-19, and Mycobacterium colombiense who finally recovered from the disease. Nontuberculous mycobacteria infection is common in HIV patients, but bronchoalveolar lavage fluid NGS cannot identify nontuberculous mycobacteria in our report. Traditional blood culture was useful in detecting acid-fast bacilli in our study and then detecting the pathogens with NGS. Combining traditional microbial culture and emerging rapid NGS methods is more conducive to clinical diagnosis and treatment.

2.
Adv Healthc Mater ; : e2304576, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689517

ABSTRACT

Immunotherapeutic effect is restricted by the nonimmunogenic tumor phenotype and immunosuppression behaviors of tumor-associated macrophages (TAMs). In this work, a drug self-assembly (designated as CeBLZ) is fabricated based on chlorin e6 (Ce6) and BLZ945 to activate photodynamic immunotherapy through tumor immunogenic induction and tumor-associated macrophage depletion. It is found that Ce6 tends to assemble with BLZ945 without any drug excipients, which can enhance the cellular uptake, tumor penetration, and blood circulation behaviors. The robust photodynamic therapy effect of CeBLZ efficiently suppresses the primary tumor growth and also triggers immunogenic cell death to reverse the nonimmunogenic tumor phenotype. Moreover, CeBLZ can deplete TAMs in tumor tissues to reverse the immunosuppression microenvironment, activating abscopal effect for distant tumor inhibition. In vitro and in vivo results confirm the superior antitumor effect of CeBLZ with negligible side effect, which might promote the development of sophisticated drug combinations for systematic tumor management.

3.
Polymers (Basel) ; 16(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611242

ABSTRACT

The design of high-performance polyimide (PI) films and understanding the relationship of the structure-dielectric property are of great significance in the field of the microelectronics industry, but are challenging. Herein, we describe the first work to construct a series of novel tert-butyl PI films (denoted as PI-1, PI-2, PI-3, and PI-4) based on a low-temperature polymerization strategy, which employed tetracarboxylic dianhydride (pyromellitic anhydride, 3,3',4,4'-biphenyl tetracarboxylic anhydride, 4,4'-diphenyl ether dianhydride, and 3,3',4,4'-benzophenone tetracarboxylic anhydride) and 4,4'-diamino-3,5-ditert butyl biphenyl ether as monomers. The results indicate that introducing tert-butyl branches in the main chain of PIs can enhance the free volume of the molecular chain and reduce the interaction between molecular chains of PI, resulting in a low dielectric constant. Particularly, the optimized PI-4 exhibits an excellent comprehensive performance with a high (5) wt% loss temperature (454 °C), tensile strength (117.40 MPa), and maximum hydrophobic angle (80.16°), and a low dielectric constant (2.90), which outperforms most of the results reported to date.

4.
Clin Transl Med ; 14(5): e1674, 2024 May.
Article in English | MEDLINE | ID: mdl-38685486

ABSTRACT

BACKGROUND: The current standard of care for locally advanced gastric cancer (GC) involves neoadjuvant chemotherapy followed by radical surgery. Recently, neoadjuvant treatment for this condition has involved the exploration of immunotherapy plus chemotherapy as a potential approach. However, the efficacy remains uncertain. METHODS: A single-arm, phase 2 study was conducted to evaluate the efficacy and tolerability of neoadjuvant camrelizumab combined with mFOLFOX6 and identify potential biomarkers of response through multi-omics analysis in patients with resectable locally advanced GC. The primary endpoint was the pathological complete response (pCR) rate. Secondary endpoints included the R0 rate, near pCR rate, progression-free survival (PFS), disease-free survival (DFS), and overall survival (OS). Multi-omics analysis was assessed by whole-exome sequencing, transcriptome sequencing, and multiplex immunofluorescence (mIF) using biopsies pre- and post-neoadjuvant therapy. RESULTS: This study involved 60 patients, of which 55 underwent gastrectomy. Among these, five (9.1%) attained a pathological complete response (pCR), and 11 (20.0%) reached near pCR. No unexpected treatment-emergent adverse events or perioperative mortality were observed, and the regimen presented a manageable safety profile. Molecular changes identified through multi-omics analysis correlated with treatment response, highlighting associations between HER2-positive and CTNNB1 mutations with treatment sensitivity and a favourable prognosis. This finding was further supported by immune cell infiltration analysis and mIF. Expression data uncovered a risk model with four genes (RALYL, SCGN, CCKBR, NTS) linked to poor response. Additionally, post-treatment infiltration of CD8+ T lymphocytes positively correlates with pathological response. CONCLUSION: The findings suggest the combination of PD-1-inhibitor and mFOLFOX6 showed efficacy and acceptable toxicity for locally advanced GC. Extended follow-up is required to determine the duration of the response. This study lays essential groundwork for developing precise neoadjuvant regimens.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Neoadjuvant Therapy , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Male , Female , Middle Aged , Neoadjuvant Therapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Leucovorin/therapeutic use , Fluorouracil/therapeutic use , Organoplatinum Compounds/therapeutic use , Organoplatinum Compounds/pharmacology , Treatment Outcome , Multiomics
5.
Signal Transduct Target Ther ; 9(1): 73, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528050

ABSTRACT

Patients with advanced gastric cancer typically face a grim prognosis. This phase 1a (dose escalation) and phase 1b (dose expansion) study investigated safety and efficacy of first-line camrelizumab plus apatinib and chemotherapy for advanced gastric or gastroesophageal junction adenocarcinoma. The primary endpoints included maximum tolerated dose (MTD) in phase 1a and objective response rate (ORR) across phase 1a and 1b. Phase 1a tested three dose regimens of camrelizumab, apatinib, oxaliplatin, and S-1. Dose regimen 1: camrelizumab 200 mg on day 1, apatinib 250 mg every other day, oxaliplatin 100 mg/m² on day 1, and S-1 40 mg twice a day on days 1-14. Dose regimen 2: same as dose regimen 1, but oxaliplatin 130 mg/m². Dose regimen 3: same as dose regimen 2, but apatinib 250 mg daily. Thirty-four patients were included (9 in phase 1a, 25 in phase 1b). No dose-limiting toxicities occurred so no MTD was identified. Dose 3 was set for the recommended phase 2 doses and administered in phase 1b. The confirmed ORR was 76.5% (95% CI 58.8-89.3). The median progression-free survival was 8.4 months (95% CI 5.9-not evaluable [NE]), and the median overall survival (OS) was not mature (11.6-NE). Ten patients underwent surgery after treatment and the multidisciplinary team evaluation. Among 24 patients without surgery, the median OS was 19.6 months (7.8-NE). Eighteen patients (52.9%) developed grade ≥ 3 treatment-emergent adverse events. Camrelizumab plus apatinib and chemotherapy showed favorable clinical outcomes and manageable safety for untreated advanced gastric cancer (ChiCTR2000034109).


Subject(s)
Antibodies, Monoclonal, Humanized , Pyridines , Stomach Neoplasms , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Oxaliplatin , Pyridines/therapeutic use , Stomach Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2 , Drug Therapy, Combination/methods
7.
Adv Sci (Weinh) ; 11(15): e2309204, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38239040

ABSTRACT

The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG2000. DdLD NPs can improve the stability, intracellular delivery, and tumor targeting accumulation of DOX and dBET57. Meanwhile, the chemotherapeutic effect of DdLD NPs can efficiently destroy colorectal cancer cells to trigger a robust immunogenic cell death (ICD). More importantly, the chemo-regulation effects of DdLD NPs can inhibit colorectal cancer glycolysis to reduce the lactate production, and downregulate the PD-L1 expression through BRD4 degradation. Taking advantages of the chemotherapy and chemo-regulation ability, DdLD NPs systemically activated the antitumor immunity to suppress the primary and metastatic colorectal cancer progression without inducing any systemic side effects. Such self-delivery nano-PROTACs may provide a new insight for chemotherapy-enabled tumor immunotherapy.


Subject(s)
B7-H1 Antigen , Colorectal Neoplasms , Humans , Proteolysis Targeting Chimera , Nuclear Proteins , Cell Line, Tumor , Transcription Factors , Doxorubicin/therapeutic use , Doxorubicin/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Immunotherapy , Lactates/pharmacology , Tumor Microenvironment , Bromodomain Containing Proteins , Cell Cycle Proteins
8.
HIV Med ; 25(3): 361-369, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37990782

ABSTRACT

BACKGROUND: People living with HIV (PLWH) and receiving antiretroviral therapy (ART) have a goal of achieving and maintaining viral suppression; however, the existence of PLWH that show events of low-level viremia (LLV) between 50 and 1000 copies/mL and with different virological consequences have been observed. Moreover, some reports indicate that LLV status can lead to residual immune activation and inflammation, leading to a higher occurrence of non-AIDS-defining events (nADEs) and other adverse clinical outcomes. Until now, however, published data have shown controversial results that hinder understanding of this phenomenon's actual cause(s) and origin(s). Integrase strand transfer inhibitors (INSTIs)-based therapies could lead to lower LLV over time and, therefore, more effective virological control. OBJECTIVES: This review aims to assess recent findings to provide a view of the clinical significance and management of low-level HIV viremia in the era of INSTIs.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Integrase Inhibitors , Humans , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Viremia/drug therapy , Clinical Relevance , Viral Load , Integrases/therapeutic use , HIV Integrase Inhibitors/therapeutic use
9.
Viruses ; 15(12)2023 12 08.
Article in English | MEDLINE | ID: mdl-38140638

ABSTRACT

The prolonged course of the COVID-19 pandemic necessitates sustained surveillance of emerging variants. This study aimed to develop a multiplex real-time polymerase chain reaction (rt-PCR) suitable for the real-time tracking of Omicron subvariants in clinical and wastewater samples. Plasmids containing variant-specific mutations were used to develop a MeltArray assay. After a comprehensive evaluation of both analytical and clinical performance, the established assay was used to detect Omicron variants in clinical and wastewater samples, and the results were compared with those of next-generation sequencing (NGS) and droplet digital PCR (ddPCR). The MeltArray assay identified 14 variant-specific mutations, enabling the detection of five Omicron sublineages (BA.2*, BA.5.2*, BA.2.75*, BQ.1*, and XBB.1*) and eight subvariants (BF.7, BN.1, BR.2, BQ.1.1, XBB.1.5, XBB.1.16, XBB.1.9, and BA.4.6). The limit of detection (LOD) of the assay was 50 copies/reaction, and no cross-reactivity was observed with 15 other respiratory viruses. Using NGS as the reference method, the clinical evaluation of 232 swab samples exhibited a clinical sensitivity of > 95.12% (95% CI 89.77-97.75%) and a specificity of > 95.21% (95% CI, 91.15-97.46%). When used to evaluate the Omicron outbreak from late 2022 to early 2023, the MeltArray assay performed on 1408 samples revealed that the epidemic was driven by BA.5.2* (883, 62.71%) and BF.7 (525, 37.29%). Additionally, the MeltArray assay demonstrated potential for estimating variant abundance in wastewater samples. The MeltArray assay is a rapid and scalable method for identifying SARS-CoV-2 variants. Integrating this approach with NGS and ddPCR will improve variant surveillance capabilities and ensure preparedness for future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Pandemics , Wastewater , Disease Outbreaks , Real-Time Polymerase Chain Reaction
10.
Pharmaceutics ; 15(10)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37896137

ABSTRACT

Chemotherapy-induced side effects restrain anti-tumor efficiency, with hyperlipidemia being the most common accompanying disease to cause treatment failure. In this work, a chimeric peptide-engineered nanomedicine (designated as PRS) was fabricated for the synergistic suppression of tumor growth and therapy-induced hyperlipidemia. Within this nanomedicine, the tumor matrix-targeting peptide palmitic-K(palmitic)CREKA can self-assemble into a nano-micelle to encapsulate Rapamycin (mTOR inhibitor) and SBC-115076 (PCSK9 inhibitor). This PRS nanomedicine exhibits a uniform nano-distribution with good stability which enhances intracellular drug delivery and tumor-targeting delivery. Also, PRS was found to synergistically inhibit tumor cell proliferation by interrupting the mTOR pathway and reducing Rapamycin-induced hyperlipidemia by increasing the production of LDLR. In vitro and in vivo results demonstrate the superiority of PRS for systematic suppression of tumor growth and the reduction of hyperlipidemia without initiating any other toxic side effects. This work proposes a sophisticated strategy to inhibit tumor growth and also provides new insights for cooperative management of chemotherapy-induced side effects.

11.
PeerJ ; 11: e15738, 2023.
Article in English | MEDLINE | ID: mdl-37483974

ABSTRACT

Background: Leaf nutrient resorption is a key strategy in plant conservation that minimizes nutrient loss and enhances productivity. However, the differences of the nutrient resorption among garden tree species in urban ecosystems were not clearly understood, especially the differences of nitrogen resorption efficiency (NRE) and phosphorous resorption efficiency (PRE) between evergreen and deciduous trees. Methods: We selected 40 most generally used garden tree specie belonged two life forms (evergreen and deciduous) and investigated the nitrogen (N) and phosphorus (P) concentrations in green and senesced leaves and soil nutrient concentrations of nine samples trees for each species. Then, the nutrient concentrations and resorption efficiency were compared, and the soil nutrients utilization strategies were further analyzed. Results: The results showed that the N concentration was significantly higher in the green and senesced leaves of deciduous trees than in the leaves of evergreen trees. The two life-form trees were both N limited and evergreen trees were more sensitive to N limitation. The NRE and PRE in the deciduous trees were significantly higher than those in the evergreen trees. The NRE was significantly positively correlated with the PRE in the deciduous trees. As the soil N and P concentrations increased, the nutrient resorption efficiency (NuRE) of the evergreen trees increased, but that of the deciduous trees decreased. Compared with the deciduous trees, the evergreen trees were more sensitive to the feedback of soil N and P concentrations. These findings reveal the N and P nutrient resorption mechanism of evergreen and deciduous trees and fill a gap in the understanding of nutrient resorption in urban ecosystems.


Subject(s)
Ecosystem , Trees , Trees/physiology , Gardens , Soil , Phosphorus , Plant Leaves/physiology , Nitrogen , Nutrients
12.
Nano Lett ; 23(13): 6193-6201, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37387510

ABSTRACT

Therapy-induced DNA damage is the most common strategy to inhibit tumor cell proliferation, but the therapeutic efficacy is limited by DNA repair machinery. Carrier-free nanoproteolysis targeting chimeras (PROTACs), designed as SDNpros, have been developed to enhance photodynamic therapy (PDT) by blocking the DNA damage repair pathway through BRD4 degradation. Specifically, SDNpros are constructed through noncovalent interactions between the photosensitizer of chlorine e6 (Ce6) and PROTACs of BRD4 degrader (dBET57) via self-assembly. SDNpro has favorable dispersibility and a uniform nanosize distribution without drug excipients. Upon light irradiation, SDNpro produces abundant reactive oxygen species (ROS) to induce DNA oxidative damage. Meanwhile, the DNA repair pathway would be interrupted by the concurrent degradation of BRD4, which could intensify the oxidative DNA damage and elevate PDT efficiency. Beneficially, SDNpro suppresses tumor growth and avoids systemic side effects, providing a promising strategy to promote the clinical translation of PROTACs for tumor treatment.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Nuclear Proteins , Excipients , Cell Line, Tumor , Transcription Factors , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , DNA Damage , Porphyrins/therapeutic use
13.
Adv Healthc Mater ; 12(24): e2300711, 2023 09.
Article in English | MEDLINE | ID: mdl-37166979

ABSTRACT

Tumor cells resist oxidative damage and apoptosis by activating defense mechanisms. Herein, a self-delivery biomedicine (designated as BSC) is developed by the self-assembly of Bortezomib (BTZ), Sabutoclax (Sab) and Chlorin e6 (Ce6). Interestingly, BTZ can be coordinated with Sab to promote the assembly of uniform ternary biomedicine through non-covalent intermolecular interactions. Moreover, BTZ as a proteasome inhibitor can prevent tumor cells from scavenging damaged proteins to reduce their oxidative resistance. Sab can downregulate B-cell lymphoma 2 (Bcl-2) to decrease the antiapoptotic protein. Both the proteasome and Bcl-2 inhibitions contribute to increasing cell apoptosis and amplifying photodynamic therapy (PDT) efficacy of Ce6. Encouragingly, carrier-free BSC receives all biological activities of these assembly elements, including photodynamic performance as well as inhibitory capabilities of proteasome and Bcl-2. Besides, BSC has a preferable cellular uptake ability and tumor retention property, which increase the drug delivery efficiency and bioavailability. In vitro and in vivo research demonstrate the superior PDT efficiency of BSC by proteasome and Bcl-2 inhibitions. Of special note, the coordination-driven self-assembly of BSC is pH-responsive, which can be disassembled for controlled drug release upon tumor acidic microenvironment. This study will expand the applicability of self-delivery nanomedicine with sophisticated mechanisms for tumor treatment.


Subject(s)
Nanoparticles , Photochemotherapy , Porphyrins , Photosensitizing Agents/pharmacology , Proteasome Endopeptidase Complex , Cell Line, Tumor , Porphyrins/pharmacology
14.
ACS Nano ; 17(11): 9972-9986, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37200049

ABSTRACT

Paraptosis is characterized by the extensive vacuolization of endoplasmic reticulum (ER) and mitochondria, which will cause the release of damage-associated molecular patterns to promote immunogenic cell death (ICD). However, the tumor can develop an immunosuppressive microenvironment to affect the ICD activation for the purpose of immune escape. Herein, a paraptosis inducer (CMN) is constructed to amplify the ICD effect for efficient immunotherapy by inhibiting the activity of indoleamine 2,3-dioxygenase (IDO). Initially, CMN is prepared by the assembly of copper ions (Cu2+), morusin (MR), and IDO inhibitor (NLG919) through noncovalent interactions. Without the need for extra drug carriers, CMN possesses very high drug contents and exhibits a favorable GSH responsiveness for disassembly. Subsequently, the released MR can trigger paraptosis to cause extensive vacuolization of ER and mitochondria, contributing to activating ICD for immunotherapy. Moreover, NLG919 would inhibit IDO to remodel the tumor microenvironment and promote the activation of cytotoxic T cells, leading to an intensive antitumor immunity. Abundant in vivo studies indicate that CMN is superior in suppressing the proliferations of not only primary tumor but also metastatic and rechallenged tumors. Such a GSH-responsive paraptosis inducer might provide a promising strategy to trigger ICD and enhance tumor immunotherapy.


Subject(s)
Immunogenic Cell Death , Neoplasms , Humans , Neoplasms/drug therapy , Drug Carriers , Enzyme Inhibitors , Immunotherapy , Tumor Microenvironment , Cell Line, Tumor
15.
J Control Release ; 357: 460-471, 2023 05.
Article in English | MEDLINE | ID: mdl-37068523

ABSTRACT

Immune checkpoint blockade (ICB) has shown significant clinical success, yet its responses can vary due to immunosuppressive tumor microenvironments. To enhance antitumor immunity, combining ICB therapy with tumor metabolism reprogramming may be a promising strategy. In this study, we developed a photodynamic immunostimulant called BVC aiming to boost immune recognition and prevent immune escape for metastatic tumor eradication by reprogramming glutamine metabolism. BVC, a carrier free self-assembled nanoparticle, comprises a photosensitizer (chlorin e6), an ASCT2 inhibitor (V9302) and a PD1/PDL1 blocker (BMS-1), offering favorable stability and enhanced drug delivery efficiency. The potent photodynamic therapy (PDT) capability of BVC is attributed to its regulation of glutamine metabolism, which influences the redox microenvironment within tumor tissues. By targeting ASCT2-mediated glutamine metabolism, BVC inhibits glutamine transport and GSH synthesis, leading to the upregulation of Fas and PDL1. Additionally, BVC-mediated PDT induces immunogenic cell death, triggering a cascade of immune responses. Consequently, BVC not only enhances immune recognition between CD8+ T cells and Fas-overexpressing tumor cells but also reduces tumor cell immune escape through PD1/PDL1 blockade, significantly benefiting metastatic tumor eradication. This study paves a novel approach for multi-synergistic tumor treatment.


Subject(s)
Glutamine , Photochemotherapy , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Photosensitizing Agents/therapeutic use , Immunotherapy , Tumor Microenvironment
16.
Biomaterials ; 293: 121952, 2023 02.
Article in English | MEDLINE | ID: mdl-36502580

ABSTRACT

Tumor cells are characterized by unlimited proliferation and escape of immune clearance, which are closely associated with the down regulation of surface antigens. In this work, a carrier free photodynamic modulator (CeTaz) is developed to improve immunosuppressive tumor microenvironment and promote the recognition of tumors by T cells by epigenetic reprogramming. Specifically, CeTaz is assembled by chlorine e6 (Ce6) and tazemetostat (Taz) through intermolecular interactions. Upon light irradiation, CeTaz is able to promote the generation of reactive oxygen species (ROS) for a robust photodynamic therapy (PDT) to inhibit localized tumor growth. Meanwhile, the PDT also induces immunogenic cell death (ICD) to initiate immune response, leading to the activation of effector T cells. More importantly, CeTaz could inhibit the epigenetic regulator of EZH2 to suppress the methylation of H3K27, which would promote tumor cells to express MHC-I and release CXCL10. Consequently, the epigenetically reprogrammed tumor cells are readily recognized by effector T cells to enhance the antitumor immunity. Results indicate that the PDT activated immunotherapy of CeTaz could simultaneously inhibit the growth of primary and distant tumors with a low system toxicity. This study would advance the development of carrier free nanomedicine for precise treatment of metastatic tumor.


Subject(s)
Nanoparticles , Photochemotherapy , Cell Line, Tumor , Epigenesis, Genetic , Immunotherapy/methods , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Tumor Microenvironment , Enhancer of Zeste Homolog 2 Protein
17.
Small ; 19(3): e2205694, 2023 01.
Article in English | MEDLINE | ID: mdl-36366925

ABSTRACT

Photodynamic therapy (PDT) can generate reactive oxygen species (ROS) to cause cell apoptosis and induce immunogenic cell death (ICD) to activate immune response, becoming a promising antitumor modality. However, the overexpressions of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand 1 (PD-L1) on tumor cells would reduce cytotoxic T cells infiltration and inhibit the immune activation. In this paper, a simple but effective nanosystem is developed to solve these issues for enhanced photodynamic immunotherapy. Specifically, it has been constructed a self-delivery biomedicine (CeNB) based on photosensitizer chlorine e6 (Ce6), IDO inhibitor (NLG919), and PD1/PDL1 blocker (BMS-1) without the need for extra excipients. Of note, CeNB possesses fairly high drug content (nearly 100%), favorable stability, and uniform morphology. More importantly, CeNB-mediated IDO inhibition and PD1/PDL1 blockade greatly improve the immunosuppressive tumor microenvironments to promote immune activation. The PDT of CeNB not only inhibits tumor proliferation but also induces ICD response to activate immunological cascade. Ultimately, self-delivery CeNB tremendously suppresses the tumor growth and metastasis while leads to a minimized side effect. Such simple and effective antitumor strategy overcomes the therapeutic resistance against PDT-initiated immunotherapy, suggesting a potential for metastatic tumor treatment in clinic.


Subject(s)
Neoplasms , Photochemotherapy , Porphyrins , Humans , Cell Line, Tumor , Enzyme Inhibitors , Immunotherapy/methods , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use , Tumor Microenvironment
18.
Polymers (Basel) ; 16(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38201768

ABSTRACT

Utilizing triethylenediamine (DA), 1,3-propanesultone (PS), whose ring opens during the formation of the dizwiterion-intermediate DA-2PS, and the metal chlorides XCly, where X = Sn(IV), Zn(II),Al(III), Fe(III) and Mn(II), are used for the synthesis of five kinds of acidic metal-based functionalized ionic liquid catalysts ([DA-2PS][XCly]2). Their chemical structures, thermal stability and dual acidic active site were analyzed. We investigated the performance of [DA-2PS][XCly]2 in catalyzing the esterification reaction between 2,5-furandicarboxylic acid (FDCA) and ethylene glycol (EG) to synthesize poly (ethylene 2,5-furandicarboxylate)(PEF). Among the catalysts tested, [DA-2PS][SnCl5]2 exhibited the best catalytic performance under identical process parameters, and the optimal catalyst dosage was determined to be 0.05 mol% based on FDCA. The optimal conditions for the reaction were predicted using response surface methodology: a feed ratio of EG:FDCA = 1.96:1, an esterification temperature of 219.86 °C, a polycondensation temperature of 240.04 °C and a polycondensation time of 6.3 h, with a intrinsic viscosity of 0.67 dL·g-1. The resulting PEF was experimentally verified to exhibit an intrinsic viscosity of 0.68 dL·g-1 and a number average molecular weight of 28,820 g·mol-1. Finally, the structure and thermal properties of PEF were characterized. The results confirmed that PEF possessed the correct structure, exhibited high thermal stability and demonstrated excellent thermal properties.

19.
RSC Adv ; 12(49): 31564-31576, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36380916

ABSTRACT

PET (polyethylene terephthalate) has good transparency, corrosion resistance, gas barrier properties and mechanical properties, and is widely used in beverage bottles, fabrics, food packaging, tires, films, engineering plastics and other fields. With the rapid growth in demand and use of PET materials, the pollution of waste PET to the environment has become increasingly prominent. The recycling methods of waste PET mainly include primary recycling, mechanical recycling, chemical recycling, and energy recycling. The chemical recycling method is of great significance for solving environmental problems and reducing the plastic industry's dependence on petrochemical resources, and is an inevitable choice for realizing PET closed-loop recycling. In this paper, the chemical depolymerization methods of waste PET, the types of alcoholysis catalysts with the greatest possibility of industrialization, and the high-value application research of chemical recovery products are reviewed in order to have a good reference significance and promote the recycling and high-value utilization of waste PET.

20.
ACS Appl Mater Interfaces ; 14(48): 53501-53510, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36399048

ABSTRACT

Lipid peroxide (LPO) is the hallmark of ferroptosis, which is a promising antitumor modality for its unique advantages. However, a cellular defense system would weaken the antitumor efficacy of ferrotherapy. Herein, a GPX4 inhibitor of ML162 and a photosensitizer of chlorine e6 (Ce6) are used to prepare the self-delivery nanomedicine (C-ML162) through hydrophobic and electrostatic interactions to enhance ferroptosis by photodynamic therapy (PDT). Specifically, carrier-free C-ML162 improves the solubility, stability, and cellular uptake of antitumor agents. Upon light irradiation, the internalized C-ML162 generates large amounts of reactive oxygen species (ROS) to oxidize cellular unsaturated lipid into LPO. More importantly, C-ML162 can directly inactivate GPX4 to enhance the accumulation of toxic LPO, inducing ferroptotic cell death. Additionally, C-ML162 is capable of accumulating at a tumor site for effective treatment. This self-delivery system to amplify lipid peroxidation via GPX4 inactivation for PDT initiated ferrotherapy might provide an appealing strategy against malignancies.


Subject(s)
Nanomedicine , Photochemotherapy , Lipid Peroxidation
SELECTION OF CITATIONS
SEARCH DETAIL
...