Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 22(8): e13896, 2023 08.
Article in English | MEDLINE | ID: mdl-37312431

ABSTRACT

Senescent cells (SnCs) are implicated in aging and various age-related pathologies. Targeting SnCs can treat age-related diseases and extend health span. However, precisely tracking and visualizing of SnCs is still challenging, especially in in vivo environments. Here, we developed a near-infrared (NIR) fluorescent probe (XZ1208) that targets ß-galactosidase (ß-Gal), a well-accepted biomarker for cellular senescence. XZ1208 can be cleaved rapidly by ß-Gal and produces a strong fluorescence signal in SnCs. We demonstrated the high specificity and sensitivity of XZ1208 in labeling SnCs in naturally aged, total body irradiated (TBI), and progeroid mouse models. XZ1208 achieved a long-term duration of over 6 days in labeling senescence without causing significant toxicities and accurately detected the senolytic effects of ABT263 on eliminating SnCs. Furthermore, XZ1208 was applied to monitor SnCs accumulated in fibrotic diseases and skin wound healing models. Overall, we developed a tissue-infiltrating NIR probe and demonstrated its excellent performance in labeling SnCs in aging and senescence-associated disease models, indicating great potential for application in aging studies and diagnosis of senescence-associated diseases.


Subject(s)
Aging , Fluorescent Dyes , Mice , Animals , Fluorescent Dyes/pharmacology , Aging/pathology , Cellular Senescence , Disease Models, Animal , Fibrosis , beta-Galactosidase
2.
Cancers (Basel) ; 15(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37174106

ABSTRACT

Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.

3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37047529

ABSTRACT

Accumulating evidence indicates that the increased burden of senescent cells (SCs) in aged organisms plays an important role in many age-associated diseases. The pharmacological elimination of SCs with "senolytics" has been emerging as a new therapy for age-related diseases and extending the healthy lifespan. In the present study, we identified that cycloastragenol (CAG), a secondary metabolite isolated from Astragalus membrananceus, delays age-related symptoms in mice through its senolytic activity against SCs. By screening a series of compounds, we found that CAG selectively kills SCs by inducing SCs apoptosis and that this process is associated with the inhibition of Bcl-2 antiapoptotic family proteins and the PI3K/AKT/mTOR pathway. In addition, CAG treatment also suppressed the development of the senescence-associated secretory phenotype (SASP) in SCs, thereby inhibiting cell migration mediated by the SASP. Furthermore, the administration of CAG for 2 weeks to mice with irradiation-induced aging alleviated the burden of SCs and improved the animals' age-related physical dysfunction. Overall, our studies demonstrate that CAG is a novel senolytic agent with in vivo activity that has the potential to be used in the treatment of age-related diseases.


Subject(s)
Cellular Senescence , Phosphatidylinositol 3-Kinases , Animals , Mice , Cellular Senescence/physiology , Aging , Proto-Oncogene Proteins c-bcl-2 , Apoptosis
4.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955822

ABSTRACT

The complement system is a part of the immune system and consists of multiple complement components with biological functions such as defense against pathogens and immunomodulation. The complement system has three activation pathways: the classical pathway, the lectin pathway, and the alternative pathway. Increasing evidence indicates that the complement system plays a role in aging. Complement plays a role in inflammatory processes, metabolism, apoptosis, mitochondrial function, and Wnt signaling pathways. In addition, the complement system plays a significant role in aging-related diseases, including Alzheimer's disease, age-related macular degeneration, and osteoarthritis. However, the effect of complement on aging and aging-related diseases is still unclear. Thus, a better understanding of the potential relationship between complement, aging, and aging-related diseases will provide molecular targets for treating aging, while focusing on the balance of complement in during treatment. Inhibition of a single component does not result in a good outcome. In this review, we discussed the research progress and effects of complement in aging and aging-related diseases.


Subject(s)
Complement System Proteins , Macular Degeneration , Aging , Complement Activation , Complement System Proteins/metabolism , Humans , Lectins
5.
Aging (Albany NY) ; 14(9): 3941-3955, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35537009

ABSTRACT

Si Jun Zi Tang (SJZT) is a classic Traditional Chinese Medicine (TCM) prescription used to treat aging-related diseases. However, the potential molecular mechanisms of the anti-aging effects of the bioactive compounds and their targets remain elusive. In this study, we combined network pharmacology and molecular docking with in vivo experiments to elucidate the anti-aging molecular mechanism of SJZT. A series of network pharmacology strategies were used to predict potential targets and therapeutic mechanisms of SJZT, including compound screening, pathway enrichment analysis and molecular docking studies. Based on the network pharmacology predictions and observation of outward signs of aging, the expression levels of selected genes and proteins and possible key targets were subsequently validated and analysed using qRT-PCR and immunoblotting. Using a data mining approach, 235 effective targets of SJZT and aging were obtained. AKT1, STAT3, JUN, MAPK3, TP53, MAPK1, TNF, RELA, MAPK14 and IL6 were identified as core genes in the Protein-Protein Interaction Networks (PPI) analysis. The results of the effective target Gene Ontology (Go) functional enrichment analysis suggested that SJZT may be involved aging and antiapoptotic biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the anti-aging mechanism of SJZT may be associated with the PI3K-AKT and P38 MAPK signalling pathways. Molecular docking analysis suggested that kaempferol and quercetin could fit in the binding pockets of the core targets. In addition, SJZT alleviated the aging symptoms of mice such as osteoporosis and hair loss. In conclusion, the anti-aging effect of SJZT was associated with the inhibition of the PI3K-AKT and P38 MAPK signalling pathways, and these findings were consistent with the network pharmacology prediction.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Aging , Animals , Mice , Molecular Docking Simulation , Network Pharmacology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...