Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443631

ABSTRACT

A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2',5,5'-tetrafluoro-3,3',6,6'-tetrakis(2-thiophenethio)-4,4'-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L'Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10-10 S cm-1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 10-5 S cm-1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.

2.
Inorg Chem ; 60(1): 161-166, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33306390

ABSTRACT

The cruciform linker molecule here features two designer functions: the pyrazole donors for framework construction, and the vicinal alkynyl units for benzannulation to form nanographene units into the Ni8-pyrazolate scaffold. Unlike the full 12 connections of the Ni8(OH)4(H2O)2 clusters in other Ni8-pyrazolate networks, significant linker deficiency was observed here, leaving about half of the Ni(II) sites capped by acetate ligands, which can be potentially removed to open the metal sites for reactivity. The crystalline Ni8-pyrazolate scaffold also retains the crystalline order even after thermal treatments (up to 300 °C) that served to partially graphitize the neighboring alkyne units. The resultant nanographene components enhance the electroactive properties of the porous hosts, achieving hydrogen evolution reaction (HER) activity that rivals that of topical nickel/palladium-enabled materials.

3.
Inorg Chem ; 59(10): 7097-7102, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32352762

ABSTRACT

The series of highly stable porous solids here feature systematic, regiospecific sulfur substitutions on the organic linkers for versatile functions. One major surprise lies in the controllable sequential reactions between sodium thiomethoxide (NaSMe) and octafluorobiphenyl-4,4'-dicarboxylic acid (H2bpdc-8F; this was readily made without precious metal catalysts). Namely, 3, 4, 6, and 8 methylthio-substitutions can be respectively achieved with regiospecificity (i.e., to produce the four molecules H2bpdc-3S5F, H2bpdc-4S4F, H2bpdc-6S2F, H2bpdc-8MS). A second surprise lies in their persistent formation of the UiO-67-type net with Zr(IV) ions, e.g., even in the case of the fully sulfurated H2bpdc-8MS. In addition to the remarkable breadth of functional control, all the Zr(IV)-based crystalline solids here are stable in boiling water (e.g., for 24 h) and in air as solventless, activated porous solids. Moreover, the thioether groups allow for convenient H2O2 oxidation to fine-tune the hydrophilicity and luminescence properties and improve proton conductivity.

4.
Chem Commun (Camb) ; 56(25): 3645-3648, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32108193

ABSTRACT

The black, small-bandgap semiconducting framework Eu-dfdmat features extensive Eu3+-sulfur bridges from the linear linker 2,5-difluoro-3,6-dimercaptoterephthalate (dfdmt). Each Eu center is chelated to four dfdmt linkers to form an anionic coordination sphere involving four carboxyl O and four mercapto S centers (EuO4S4), wherein the charge buildup can be alleviated by the electron-withdrawing fluoro groups. The extensive metal-linker bonding, together with a trace of Eu2+ species, appears to boost electronic interaction in the 2D net, generating a small band gap of 1.31 eV (946 nm), albeit a modest conductivity (e.g., 10-6 S m-1). The crystals also exhibit persistent EPR signals indicative of organic radicals (g = 2.002). The Eu-dfdmt solid are stable in air and can be exfoliated into ultrathin nanosheets (ca. 5 nm; 6-8 layers).

SELECTION OF CITATIONS
SEARCH DETAIL
...