Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cognition ; 223: 105019, 2022 06.
Article in English | MEDLINE | ID: mdl-35121431

ABSTRACT

Ordinal processing plays a fundamental role in both the representation and manipulation of symbolic numbers. As such, it is important to understand how children come to develop a sense of ordinality in the first place. The current study examines the role of the count-list in the development of ordinal knowledge through the investigation of two research questions: (1) Do K-1 children struggle to extend the notion of numerical order beyond the count-list, and if so (2) does this extension develop incrementally or manifest as a qualitative re-organization of how children recognize the ordinality of numerical sequences. Overall, we observed that although young children reliably identified adjacent ordered sequences (i.e., those that match the count-list; '2-3-4') as being in the correct ascending order, they performed significantly below chance on non-adjacent ordered trials (i.e., those that do not match the count-list but are in the correct order; '2-4-6') from the beginning of kindergarten to the end of first grade. Further, both qualitative and quantitative analyses supported the conclusion that the ability to extend notions of ordinality beyond the count-list emerged as a conceptual shift in ordinal understanding rather than through incremental improvements. These findings are the first to suggest that the ability to extend notions of ordinality beyond the count-list to include non-adjacent numbers is non-trivial and reflects a significant developmental hurdle that most children must overcome in order to develop a mature sense of ordinality.


Subject(s)
Knowledge , Child , Child, Preschool , Humans
2.
Dev Sci ; 23(2): e12884, 2020 03.
Article in English | MEDLINE | ID: mdl-31271687

ABSTRACT

A long-standing debate in the field of numerical cognition concerns the degree to which symbolic and non-symbolic processing are related over the course of development. Of particular interest is the possibility that this link depends on the range of quantities in question. Behavioral and neuroimaging research with adults suggests that symbolic and non-symbolic quantities may be processed more similarly within, relative to outside of, the subitizing range. However, it remains unclear whether this unique link exists in young children at the outset of formal education. Further, no study has yet taken numerical size into account when investigating the longitudinal influence of these skills. To address these questions, we investigated the relation between symbolic and non-symbolic processing inside versus outside the subitizing range, both cross-sectionally and longitudinally, in 540 kindergarteners. Cross-sectionally, we found a consistently stronger relation between symbolic and non-symbolic number processing within versus outside the subitizing range at both the beginning and end of kindergarten. We also show evidence for a bidirectional relation over the course of kindergarten between formats within the subitizing range, and a unidirectional relation (symbolic â†’ non-symbolic) for quantities outside of the subitizing range. These findings extend current theories on symbolic and non-symbolic magnitude development by suggesting that non-symbolic processing may in fact play a role in the development of symbolic number abilities, but that this influence may be limited to quantities within the subitizing range.


Subject(s)
Cognition/physiology , Mathematics , Adult , Child , Child, Preschool , Female , Humans , Male , Neuroimaging , Schools
3.
Dev Psychol ; 54(3): 440-457, 2018 03.
Article in English | MEDLINE | ID: mdl-29154653

ABSTRACT

There is currently considerable discussion about the relative influences of evolutionary and cultural factors in the development of early numerical skills. In particular, there has been substantial debate and study of the relationship between approximate, nonverbal (approximate magnitude system [AMS]) and exact, symbolic (symbolic number system [SNS]) representations of number. Here we examined several hypotheses concerning whether, in the earliest stages of formal education, AMS abilities predict growth in SNS abilities, or the other way around. In addition to tasks involving symbolic (Arabic numerals) and nonsymbolic (dot arrays) number comparisons, we also tested children's ability to translate between the 2 systems (i.e., mixed-format comparison). Our data included a sample of 539 kindergarten children (M = 5.17 years, SD = .29), with AMS, SNS, and mixed-comparison skills assessed at the beginning and end of the academic year. In this way, we provide, to the best of our knowledge, the most comprehensive test to date of the direction of influence between the AMS and SNS in early formal schooling. Results were more consistent with the view that SNS abilities at the beginning of kindergarten lay the foundation for improvement in both AMS abilities and the ability to translate between the 2 systems. It is important to note that we found no evidence to support the reverse. We conclude that, once one acquires a basic grasp of exact number symbols, it is this understanding of exact number (and perhaps repeated practice therewith) that facilitates growth in the AMS. Though the precise mechanism remains to be understood, these data challenge the widely held view that the AMS scaffolds the acquisition of the SNS. (PsycINFO Database Record


Subject(s)
Mathematical Concepts , Analysis of Variance , Child, Preschool , Female , Humans , Longitudinal Studies , Male , Models, Psychological , Psychological Tests , Psychology, Child , Regression Analysis , Reproducibility of Results , Symbolism
SELECTION OF CITATIONS
SEARCH DETAIL
...