Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Biotechnol ; 30(10): 1293-1301, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34721925

ABSTRACT

Tea is one of the most widely consumed aromatic beverages in the world because of its taste and flavor, as well as due to many potential health beneficial properties. Metabolomics focuses on an in-depth analysis of all metabolites in living organisms. In this study, 29 primary metabolites and 25 secondary metabolites were identified using GC/MS and UPLC-QTOF/MS, respectively. Further, PCA analysis showed conspicuous discrimination for the ten varieties of green tea with metabolite profiling. Among them, organic acids, amino acids, flavan-3-ols, and flavonol glycosides varied greatly through checking the VIP values of the PLS-DA model. Moreover, the intrinsic and/or extrinsic factors characterizing each type of green tea were also discussed. The chemical component marker derived here should be used as an important detection index, while evaluating the tea quality, as well as while establishing the tea quality standard. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00970-4.

2.
Molecules ; 26(4)2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33562140

ABSTRACT

Crataegus laevigata belongs to the family Rosaceae, which has been widely investigated for pharmacological effects on the circulatory and digestive systems. However, there is limited understanding about its anti-oxidative stress and anti-inflammatory effects on skin. In this study, 70% ethanol C. laevigata berry extract (CLE) was investigated on lipopolysaccharide (LPS)-stimulated keratinocytes. The LPS-induced overproduction of reactive oxygen species (ROS) was suppressed by the treatment with CLE. In response to ROS induction, the overexpression of inflammatory regulating signaling molecules including mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB), and nuclear factor of activated T-cells (NFAT) were reduced in CLE-treated human keratinocytes. Consequently, CLE significantly suppressed the mRNA levels of pro-inflammatory chemokines and interleukins in LPS-stimulated cells. Our results indicated that CLE has protective effects against LPS-induced injury in an in vitro model and is a potential alternative agent for inflammatory treatment.


Subject(s)
Crataegus/chemistry , Keratinocytes/drug effects , Keratinocytes/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Cell Survival/drug effects , Chemokines/genetics , Gene Expression Regulation/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Keratinocytes/metabolism , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , RNA, Messenger/genetics , Transcription Factor AP-1/metabolism
3.
Antonie Van Leeuwenhoek ; 112(11): 1623-1632, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31218500

ABSTRACT

A Gram-stain positive, facultatively aerobic, motile and rod-shaped bacterial strain, designated THG-SMD2.3T, was isolated from a soil sample collected in a tangerine field, Republic of Korea. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Cellulomonas and to be closely related to Cellulomonas fimi ATCC 484T (98.5%), Cellulomonas biazotea DSM 20112T (98.3%), Cellulomonas chitinilytica X.bu-bT (98.0%), Cellulomonas xylanilytica XIL11T (97.2%), Cellulomonas humilata ATCC 25174T (97.1%) and Cellulomonas composti TR7-06T (97.0%). The 16S rRNA gene sequence similarities with other current species of the genus Cellulomonas were in the range 95.4-96.6%. Catalase and oxidase tests were found to be positive. The DNA G+C content was determined to be 73.0 mol%. DNA-DNA hybridization values between strain THG-SMD2.3T and C. fimi ATCC 484T, C. biazotea DSM 20112T, C. chitinilytica X.bu-bT, C. xylanilytica XIL11T, C. humilata ATCC 25174T and C. composti TR7-06T were 58.1 ± 1.6%, 56.7 ± 0.8%, 30.3 ± 1.6%, 22.8 ± 1.6%, 19.9 ± 1.6%, and 13.5 ± 3.0%, respectively. Strain THG-SMD2.3T was also found to be able to grow at 20-42 °C, at 0-3% NaCl and at pH 5.5-10. The major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and iso-C14:0. The predominant menaquinone was identified as tetrahydrogenated menaquinones with nine isoprene units [MK-9(H4)]. The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. Based on these phenotypic, genotypic and phylogenetic characterisations strain THG-SMD2.3T (= KACC 19341T = CGMCC 1.16303T) is concluded to represent a novel species of the genus Cellulomonas, for which the name Cellulomonas aurantiaca sp. nov. is proposed.


Subject(s)
Cellulomonas/classification , Cellulomonas/isolation & purification , Citrus , Soil Microbiology , Cellulomonas/genetics , Genome, Bacterial , Genomics/methods , Phylogeny , RNA, Ribosomal, 16S/genetics , Republic of Korea , Soil
4.
Appl Biochem Biotechnol ; 184(4): 1073-1093, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28948464

ABSTRACT

Radix Scutellariae (RS) has long been used in the treatment of inflammatory and allergic diseases. Its main flavonoids, baicalin (BG) and wogonoside (WG), can be hydrolyzed into their corresponding aglycones, baicalein (B) and wogonin (W). In this study, we developed a safe and effective method of transforming these glycosides using Peclyve PR. The transformation rate of BG and WG reached 98.5 and 98.1%, respectively, with 10% enzyme at 40 °C for 60 h. Furthermore, we compared the anti-photoaging activity of RS before and after enzyme treatment, as well as their respective main components, in UVB-irradiated HaCaT cells. Results found that enzyme-treated RS (ERS) appeared to be much better at preventing UVB-induced photoaging than RS. ERS significantly inhibited the upregulation of matrix metalloproteinase-1 and IL-6 caused by UVB radiation by inactivating the MAPK/AP-1 and NF-κB/IκB-α signaling pathways. ERS treatment also recovered UVB-induced reduction of procollagen type I by activating the TGF-ß/Smad pathway. In addition, ERS exhibited an excellent antioxidant activity, which could increase the expression of cytoprotective antioxidants such as HO-1 and NQ-O1, by facilitating Nrf2 nuclear transfer. These findings demonstrated that the photoprotective effects of RS were significantly improved by enzyme-modified biotransformation.


Subject(s)
Antioxidants/pharmacology , Keratinocytes/metabolism , Lamiaceae/chemistry , Plant Extracts/pharmacology , Sunscreening Agents/pharmacology , Ultraviolet Rays/adverse effects , Antioxidants/chemistry , Cell Line , Humans , Keratinocytes/pathology , Plant Extracts/chemistry , Sunscreening Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...