Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
RSC Adv ; 13(40): 28089-28096, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37746341

ABSTRACT

Homoleptic complexes adopting octahedral coordination modes are usually less active in catalysis due to the saturated coordination around metal centers that prevents substrate activation in a catalytic event. In this work, we demonstrated that a homoleptic octahedral cobalt complex (1) of 4'-pyridyl-2,2';6',2''-terpyridine that experienced monoprotonation at the non-coordinating pyridyl moiety upon crystallization could serve as a highly efficient precatalyst for the hydroboration of styrene derivatives with Markovnikov selectivity. The solid-state structure of this precatalyst along with relevant homoleptic CoII and FeII complexes has been characterized by X-ray crystallography. In the solid state, 1 features one-dimensional hydrogen-bonded chains that are further stacked by interchain π⋯π interactions. The newly synthesized complexes (1-3) along with several known analogues (4-6) were examined as precatalysts for the hydroboration of alkenes. The best-performing system, 1/KOtBu was found to promote Markovnikov hydroboration of substituted styrenes with high turnover frequencies (TOFs) up to ∼47 000 h-1, comparable to the most efficient polymeric catalyst [Co(pytpy)Cl2]n reported to date. Although some limitations in substrate scope as well as functional group tolerance exist, the catalyst shows good promise for several relevant hydrofunctionaliation reactions.

2.
Dalton Trans ; 52(33): 11395-11400, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37577840

ABSTRACT

Regioselective epoxide ring-opening through hydroboration catalysed by a vanadium(III) dialkyl complex supported by a redox-active terpyridine ligand is reported. Secondary alcohols were obtained in high yields via effective Markovnikov hydroboration of terminal epoxides, showcasing a new catalytic application of an earth-abundant vanadium(III) complex.

3.
Front Oncol ; 13: 1001219, 2023.
Article in English | MEDLINE | ID: mdl-36845714

ABSTRACT

Background: Lung metastases (LM) have a poor prognosis of osteosarcoma. This study aimed to predict the risk of LM using the nomogram in patients with osteosarcoma. Methods: A total of 1100 patients who were diagnosed as osteosarcoma between 2010 and 2019 in the Surveillance, Epidemiology and End Results (SEER) database were selected as the training cohort. Univariate and multivariate logistic regression analyses were used to identify independent prognostic factors of osteosarcoma lung metastases. 108 osteosarcoma patients from a multicentre dataset was as valiation data. The predictive power of the nomogram model was assessed by receiver operating characteristic curves (ROC) and calibration plots, and decision curve analysis (DCA) was utilized to interpret the accurate validity in clinical practice. Results: A total of 1208 patients with osteosarcoma from both the SEER database(n=1100) and the multicentre database (n=108) were analyzed. Univariate and multivariate logistic regression analyses showed that Survival time, Sex, T-stage, N-stage, Surgery, Radiation, and Bone metastases were independent risk factors for lung metastasis. We combined these factors to construct a nomogram for estimating the risk of lung metastasis. Internal and external validation showed significant predictive differences (AUC 0.779, 0.792 respectively). Calibration plots showed good performance of the nomogram model. Conclusions: In this study, a nomogram model for predicting the risk of lung metastases in osteosarcoma patients was constructed and turned out to be accurate and reliable through internal and external validation. Moreover we built a webpage calculator (https://drliwenle.shinyapps.io/OSLM/) taken into account nomogram model to help clinicians make more accurate and personalized predictions.

4.
RSC Adv ; 13(4): 2225-2232, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741180

ABSTRACT

An ionic metal-organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4'-pyridyl-2,2':6',2''-terpyridine (pytpy) and a simple iron(ii) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy)2FeII cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl3FeOFeCl3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn-selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans-alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.

5.
iScience ; 25(10): 105119, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185366

ABSTRACT

Synthesis of branched "Markovnikov" alcohols is crucial to various chemical industries. The catalytic reduction of substituted epoxides under mild conditions is a highly attractive method for preparing such alcohols. Classical methods based on heterogeneous or homogeneous transition metal-catalyzed hydrogenation, hydroboration, or hydrosilylation usually suffer from poor selectivity, reverse regioselectivity, limited functional group compatibility, high cost, and/or low availability of the catalysts. Here we report the discovery of highly regioselective hydroboration of nonsymmetrical epoxides catalyzed by ligated archetypal reductants in organic chemistry ‒ alkali metal triethylborohydrides. The chemoselectivity and turnover efficiencies of the present catalytic approach are excellent. Thus, terminal and internal epoxides with ene, yne, aryl, and halo groups were selectively and quantitatively reduced under a substrate-to-catalyst ratio (S/C) of up to 1000. Mechanistic investigations point to a mechanism reminiscent of frustrated Lewis pair action on substrates in which a nucleophile and Lewis acid act cooperatively on the substrate.

6.
RSC Adv ; 12(30): 19086-19090, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865571

ABSTRACT

A new diplumbane, namely [Pb(CH2SiMe3)3]2, was synthesized and structurally characterized. This group 14 element compound was found to catalyse the hydroboration of ketones and aldehydes under mild conditions without the use of additives and solvents, leading to the synthesis of a range of alcohols in high yields after hydrolysis.

8.
J Org Chem ; 85(6): 4515-4524, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32070098

ABSTRACT

A variety of substituted acridones were synthesized via a one-pot, metal-free cascade reaction. In this event, the DBU-mediated addition between quinols and ortho-methoxycarbonylaryl isocyanates formed a bicyclic oxazolidinone, followed by a sequence of intramolecular condensation, tautomerization, and decarboxylation, which led to the formation of acridones. The acridones showed mild activity against the human cytomegalovirus.


Subject(s)
Hydroquinones , Isocyanates , Decarboxylation , Humans
9.
Dalton Trans ; 49(8): 2610-2615, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32037438

ABSTRACT

Reductive catalysis with earth-abundant metals is currently of increasing importance and shows potential in replacing precious metal catalysis. In this work, we revealed catalytic hydroboration and hydrosilylation of ketones and aldehydes achieved by a structurally defined manganese(ii) coordination polymer (CP) as a precatalyst under mild conditions. The manganese-catalysed methodology can be applied to a range of functionalized aldehydes and ketones with turnover numbers (TON) of up to 990. Preliminary results on the regioselective catalytic hydrofunctionalization of styrenes by the Mn-CP catalyst are also presented.

10.
J Am Chem Soc ; 141(38): 15230-15239, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31479257

ABSTRACT

Catalysis is the second largest application for V after its use as an additive to improve steel production. Molecular complexes of vanadium(V) are particularly useful and efficient catalysts for oxidation processes; however, their ability to catalyze reductive transformations has yet to be fully explored. Here we report the first examples of polar organic functionality reduction mediated by V. Open-shell VIII complexes that feature a π-radical monoanionic 2,2':6',2″-terpyridine ligand (Rtpy•)- functionalized at the 4'-position (R = (CH3)3SiCH2, C6H5) catalyze mild and chemoselective hydroboration and hydrosilylation of functionalized ketones, aldehydes, imines, esters, and carboxamides with turnover numbers (TONs) of up to ∼1000 and turnover frequencies (TOFs) of up to ∼500 h-1. Computational evaluation of the precatalyst synthesis and activation has revealed underappreciated complexity associated with the redox-active tpy chelate.

11.
Org Lett ; 21(2): 401-406, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30624941

ABSTRACT

A novel nonanuclear copper(II) complex obtained by a facile one-pot self-assembly was found to catalyze the hydroboration of ketones and aldehydes with the absence of an activator under mild, solvent-free conditions. The catalyst is air- and moisture-stable, displaying high efficiency (1980 h-1 turnover frequency, TOF) and chemoselectivity on aldehydes over ketones and ketones over imines. This represents a rare example of divalent copper catalyst for the hydroboration of carbonyls.

12.
Org Lett ; 20(24): 7893-7897, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30525683

ABSTRACT

Highly efficient and practical hydroboration of alkenes has been catalyzed by an inexpensive and air-stable cobalt(II) coordination polymer (CP) in the presence of KO tBu. Complete conversion of alkenes to alkylboronates were performed within just 5 min with low catalyst loading (0.025 mol %), achieving the record high turnover frequencies of up to 47 520 h-1. For a range of vinylarenes, unusual Markovnikov selectivity was observed.

13.
J Org Chem ; 83(16): 9442-9448, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29932672

ABSTRACT

Highly effective hydroboration precatalyst is developed based on a cobalt(II)-terpyridine coordination polymer (CP). The hydroboration of ketones, aldehydes, and imines with pinacolborane (HBpin) has been achieved using the recyclable CP catalyst in the presence of an air-stable activator. A wide range of substrates containing polar C═O or C═N bonds have been hydroborated selectively in excellent yields under ambient conditions.

14.
Org Lett ; 19(5): 1080-1083, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28186776

ABSTRACT

An ionic cobalt-PNP complex is developed for the efficient α-alkylation of ketones with primary alcohols for the first time. A broad range of ketone and alcohol substrates were employed, leading to the isolation of alkylated ketones with yields up to 98%. The method was successfully applied to the greener synthesis of quinoline derivatives while using 2-aminobenzyl alcohol as an alkylating reagent.

15.
Nano Lett ; 16(12): 7357-7363, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960523

ABSTRACT

Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced 3-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.


Subject(s)
Dextrans , Drug Carriers , Ferric Compounds , Nanoparticles , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Humans , Riluzole/administration & dosage
16.
Angew Chem Int Ed Engl ; 55(46): 14369-14372, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27739642

ABSTRACT

Well-defined manganese complexes based on inexpensive, readily available ligands, 2,2':6',2''-terpyridine and its derivatives have been prepared and employed for the selective hydroboration of alkenes, ketones and aldehydes. Highly Markovnikov regioselective hydroboration of styrenes as well as excellent chemoselective hydroboration of ketones over alkenes were achieved, for the first time, by an earth-abundant manganese catalyst.

17.
Org Lett ; 18(2): 300-3, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26695594

ABSTRACT

A well-defined nonprecious metal cobalt(II) catalyst based on a pincer PNP ligand has been employed for the efficient N-alkylation of both aromatic and aliphatic amines with alcohols. A subtle change of reaction conditions (simply adding 4 Å molecular sieves) was observed to readily switch the resulting products (amines vs imines) with high chemoselectivity. A range of alcohols and amines including both aromatic and aliphatic substrates were efficiently converted to secondary amines in good-to-excellent yields when 2 mol % cobalt catalyst was used. Additional experiments indicate that a hydrogen-borrowing mechanism is responsible for the tandem acceptorless dehydrogenation/condensation/hydrogenation process.

18.
Org Biomol Chem ; 12(18): 2854-8, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24675905

ABSTRACT

An unexpected nucleophilic chlorination of a quinone monoketal while carrying out a pyrazolidine synthesis has led to a general preparation of multisubstituted phenols. The products are obtained in good to high yields under mild conditions. The bridged pyrazolidines that were the original targets are obtained in the presence of a protic solvent.


Subject(s)
1,2-Dimethylhydrazine/chemistry , Chlorophenols/chemical synthesis , Halogenation , Chlorophenols/chemistry , Magnetic Resonance Spectroscopy , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Quinones/chemistry
19.
Org Lett ; 15(14): 3534-7, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23829680

ABSTRACT

A general synthesis of bridged isoxazolidines from a double hetero-Michael addition of N-substituted hydroxylamines to quinone monoketals has been developed. The different addition order of N-benzylhydroxylamine and N-Boc hydroxylamine is also discussed. Moreover, the various functionalities in the isoxazolidine products allow facile derivatization.


Subject(s)
Benzoquinones/chemistry , Hydroxylamines/chemistry , Isoxazoles/chemistry , Quinones/chemistry , Molecular Structure
20.
J Agric Food Chem ; 61(17): 4035-43, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23597039

ABSTRACT

Jaboticaba (Myrciaria cauliflora) and false jaboticaba (Myrciaria vexator) fruits are two pleasant-tasting, dark-colored fruits, native to Brazil. They are rich sources of phenolic compounds, including anthocyanins, flavonoids, phenolic acids, and tannins, as well as less well known polyphenols such as depsides. These two fruits are very similar in morphology, but their taste profiles differ markedly. This study was focused on identifying the marker compounds between them using HPLC-PDA and LC-TOF-MS, combined with principal component analysis. As a result, cyanidin-3-O-glucoside was found as the major anthocyanin in Myrciaria fruits. Delphinidin-3-O-glucoside was found to be the marker compound for jaboticaba, while cyanidin-3-O-galactoside and cyanidin-3-O-arabinose were two marker compounds distinguishing false jaboticaba. In addition, two ellagitannins, iso-oenothein C and oenothein C, were isolated and identified from both of these fruits for the first time. Jaboticabin, a minor bioactive depside, occurred in both fruits and, because of its potential to treat chronic obstructive pulmonary disease, was successfully synthesized in the laboratory.


Subject(s)
Fruit/chemistry , Hydroxybenzoates/analysis , Myrtaceae/chemistry , Anthocyanins/analysis , Brazil , Chromatography, High Pressure Liquid , Depsides/analysis , Glucosides/analysis , Hydrolyzable Tannins/analysis , Hydroxybenzoates/chemical synthesis , Plant Extracts/analysis , Polyphenols/analysis , Principal Component Analysis , Spectrometry, Mass, Electrospray Ionization , Tannins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...