Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(13): 7113-7122, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36951270

ABSTRACT

Cobalt-based catalysts have been widely used for Fischer-Tropsch synthesis (FTS) in industry; however, achieving rational catalyst design at the atomic level and thereby a higher activity and more long-chain-hydrocarbon products simultaneously remain an attractive and difficult challenge. The dual-atomic-site catalysts with unique electronic and geometric interface interactions offer a great opportunity for exploiting advanced FTS catalysts with improved performance. Herein, we designed a Ru1Zr1/Co catalyst with Ru and Zr dual atomic sites on the Co nanoparticle (NP) surface through a metal-organic-framework-mediated synthesis strategy which presents greatly enhanced FTS activity (high turnover frequency of 3.8 × 10-2 s-1 at 200 °C) and C5+ selectivity (80.7%). Control experiments presented a synergic effect between Ru and Zr single-atom site on Co NPs. Further density functional theory calculations of the chain growth process from C1 to C5 revealed that the designed Ru/Zr dual sites remarkably lower the rate-limiting barriers due to the significantly weakened C-O bond and promote the chain growth processes, resulting in the greatly boosted FTS performance. Therefore, our work demonstrates the effectiveness of dual-atomic-site design in promoting the FTS performance and provides new opportunities for developing efficient industrial catalysts.

2.
RSC Adv ; 12(43): 27746-27765, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320283

ABSTRACT

Cu-based and Fe-based zeolites are promising catalysts for NH3-SCR due to their high catalytic activity, wide temperature window and good hydrothermal stability, while the detailed investigation of NH3-SCR mechanism should be based on the accurate determination of active metal sites. This review systematically summarizes the qualitative and quantitative determination of metal active sites in Cu-based or Fe-based zeolites for NH3-SCR reactions based on advanced characterization methods such as UV-vis absorption (UV-vis), temperature-programmed reduction with H2 (H2-TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure spectroscopy (XAFS), Infrared spectroscopy (IR), Electron paramagnetic resonance (EPR), Mössbauer spectroscopy and DFT calculations. The application and limitations of different characterization methods are also discussed to provide insights for further study of the NH3-SCR reaction mechanism over metal-based zeolites.

3.
Chem Commun (Camb) ; 51(55): 11123-5, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26074335

ABSTRACT

Uniform and crystalline magnetite nanoparticles are facilely fabricated and utilized as an efficient catalyst in Fischer-Tropsch synthesis (FTS). The catalyst exhibits a high and stable activity with low methane selectivity, attributed to its remarkable structural and chemical stability at the realistic conditions of FTS.


Subject(s)
Biofuels , Biomass , Coal , Magnetite Nanoparticles/chemistry , Natural Gas , Catalysis , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...