Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Oral Microbiol ; 16(1): 2361402, 2024.
Article in English | MEDLINE | ID: mdl-38860120

ABSTRACT

Background: This study aimed to investigate the effect of honokiol combined with resveratrol on bacteria responsible for oral malodor and their biofilm. Method: This study investigated drug's MIC, FICI and dynamic bactericidal susceptibility activities against Pg and Fn. The effects of drugs on biofilm metabolic activity, biofilm total amount, and biofilm microstructure were determined by CCK-8 experiment, semi-quantitative adhesion experiment and SEM, respectively. The effects of drugs on biofilm genes, extracellular polysaccharides, proteins and DNA content were determined by qRT-PCR, phenol-sulfuric acid method, BCA method and Nano Drop one C, respectively. Results: The combination had synergistic antibacterial effect on Pg and Fn. 1/2×MIC and 1×MIC combination inhibit the whole process of Pg and Fn growth. The results showed that the combination effectively reduce biofilm metabolic activity and total amount, and destroy biofilm microstructure. The results showed that the combination downregulate the gene expression both Pg and Fn, reduce extracellular polysaccharides and DNA of Pg, and reduce extracellular proteins and DNA of Fn. Conclusion: This study showed that the combination had a synergistic antibacterial effect on Pg and Fn, reduced the biofilm extracellular matrix, inhibited biofilm formation, and downregulated the expression of genes related to biofilm formation.

2.
BMC Microbiol ; 23(1): 276, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37773054

ABSTRACT

BACKGROUND: Staphylococcus haemolyticus (S. haemolyticus) is the main etiological factor in skin and soft tissue infections (SSTI). S. haemolyticus infections are an important concern worldwide, especially with the associated biofilms and drug resistance. Herein, we investigated the inhibitory effect of Flavaspidic acid BB obtained from plant extractions on clinical S. haemolyticus strains and their biofilms. Moreover, we predicted its ability to bind to the protein-binding site by molecular simulation. Since the combination of Hsp70 and RNase P synthase after molecular simulation with flavaspidic acid BB is relatively stable, enzyme-linked immunosorbent assay (ELISA) was used to investigate Hsp70 and RNase P synthase to verify the potential antimicrobial targets of flavaspidic acid BB. RESULTS: The minimum inhibitory concentrations (MIC) of flavaspidic acid BB on 16 clinical strains of S. haemolyticus was 5 ~ 480 µg/mL, and BB had a slightly higher inhibitory effect on the biofilm than MUP. The inhibitory effect of flavaspidic acid BB on biofilm formation was better with an increase in the concentration of BB. Molecular simulation verified its ability to bind to the protein-binding site. The combination of ELISA kits showed that flavaspidic acid BB promoted the activity of Hsp70 and inhibited the activity of RNase P, revealing that flavaspidic acid BB could effectively inhibit the utilization and re-synthesis of protein and tRNA synthesis, thus inhibiting bacterial growth and biofilm formation to a certain extent. CONCLUSIONS: This study could potentially provide a new prospect for the development of flavaspidic acid BB as an antibacterial agent for resistant strains.


Subject(s)
Ribonuclease P , Staphylococcus , Ribonuclease P/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Butyrophenones/pharmacology , Microbial Sensitivity Tests , Biofilms
3.
BMC Microbiol ; 22(1): 179, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840879

ABSTRACT

BACKGROUND: The increase in drug-resistant opportunistic pathogenic bacteria, especially of antibiotic-resistant Staphylococcus epidermidis (S. epidermidis), has led to difficulties in the treatment of skin and soft tissue infections (SSTI). The major reason for bacterial resistance is the formation of bacterial biofilm. Here, we report a promising combination therapy of flavaspidic acid BB (BB) and mupirocin, which can effectively eradicate the biofilm of S. epidermidis and eliminate its drug resistance. RESULT: The susceptibility test showed that the combination of BB and mupirocin has good antibacterial and antibiofilm activities, and the fractional inhibitory concentration index (FICI) of BB combined with mupirocin was 0.51 ± 0.00 ~ 0.75 ± 0.05, showing synergistic effect. Moreover, the time-kill curve assay results indicated that the combination of drugs can effectively inhibit the planktonic S. epidermidis. After drugs treatment, the drug-combination showed significantly inhibitory effects on the metabolic activity and total biomass in each stage of biofilm formation. The synergistic effect is likely related to the adhesion between bacteria, which is confirmed by field emission scanning electron microscope. And the expression level of aap, sarA and agrA genes were detected by real-time quantitative PCR (qRT-PCR). CONCLUSION: Our study provides the experimental data for the use of BB for the clinical treatment of skin infections and further demonstrate the potential of BB as a novel biofilm inhibitor.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus epidermidis , Anti-Bacterial Agents/pharmacology , Biofilms , Butyrophenones , Microbial Sensitivity Tests , Mupirocin/pharmacology
4.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2474-2479, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35531695

ABSTRACT

A new phloroglucinol was isolated from 50% ethanol extract of Dryopteris fragrans by silica gel column chromatography, Sephadex LH-20 gel column chromatography, thin-layer chromatography(TLC), and preparative liquid column chromatography. On the basis of MS, ~1H-NMR, ~(13)C-NMR, and reference materials, compound 1 was identified as 2,5-cyclohexadien-1-one, 2-{[2,6-dihydroxy-4-methoxy-3-methyl-5-(1-isobutyl)phenyl]methyl}-3,5-dihydroxy-4,4-dimethyl-6-(1-oxobutyl)(1), and named disaspidin BB. Compound 1 was evaluated for its antibacterial activity. The experimental results showed that compared with the commonly used topical antibiotics erythromycin or mupirocin, disaspidin BB exhibited significant antibacterial activities against Staphylococcus epidermidis(SEP), S. haemolyticus(SHA), and methicillin-resistant S. aureus(MRSA)(P<0.05). Additionally, disaspidin BB was sensitive to ceftazidime-resistant SEP1-SEP4, SHA5-SHA7, MRSA8, and MRSA9. The MIC values of disaspidin BB against SEP and SHA were 1.67-2.71 µg·mL~(-1) and 10.00-33.33 µg·mL~(-1) respectively. Disaspidin BB has good antibacterial activities and deserves development as a new anti-infective drug for external use.


Subject(s)
Dryopteris , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Phloroglucinol/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...