Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 657: 92-99, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37001285

ABSTRACT

Ipomoea plants possess important commercial, medicinal, and ornamental value. Molecular and morphological studies have confirmed that most species of this genus exhibit similar phenotypes but complex phylogenetic relationships. To date, limited information is available on these evolutionary relationships. In this study, systematic analysis of diverse species from Ipomoea was used to elucidate the relationships in this genus. To this end, we employed the concept of codon usage bias (CUB) to analyze the codon usage bias of five Ipomoea species such as effective number of codons (ENC) and GC content at the third synonym codon position (GC3s). Three types of plots including ENC-GC3s, parity rule 2 (PR2) and neutrality plots were employed to discover the factors determining CUB, and the frequency of hydrogen bonds and nucleotide were calculated to dissect changes in GC content at the 5'-end of the coding sequence. Our results showed little distinctness in CUB among the five species, with a reduction of hydrogen bonds content at the 5'-end (with similar changes in cytosines). In addition, optimal codons of Ipomoea aquatica ended with G or C, different from those of the other four species, which ended in A or T. These results may be useful for exploring the evolutionary relationships among this group, and for understanding the reasons for the variation among Ipomoea species.


Subject(s)
Biological Evolution , Codon Usage , Phylogeny , Base Composition , Codon/genetics , Evolution, Molecular
2.
PLoS Biol ; 21(1): e3001945, 2023 01.
Article in English | MEDLINE | ID: mdl-36656825

ABSTRACT

Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.


Subject(s)
Oryza , Receptors, Immunologic , Receptors, Immunologic/metabolism , Fungi/metabolism , Plant Diseases/microbiology , Host-Pathogen Interactions/genetics , Oryza/genetics , Oryza/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Nat Commun ; 11(1): 3914, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32764676

ABSTRACT

Cell polarity is fundamental to the development of both eukaryotes and prokaryotes, yet the mechanisms behind its formation are not well understood. Here we found that, phytohormone auxin-induced, sterol-dependent nanoclustering of cell surface transmembrane receptor kinase 1 (TMK1) is critical for the formation of polarized domains at the plasma membrane (PM) during the morphogenesis of cotyledon pavement cells (PC) in Arabidopsis. Auxin-induced TMK1 nanoclustering stabilizes flotillin1-associated ordered nanodomains, which in turn promote the nanoclustering of ROP6 GTPase that acts downstream of TMK1 to regulate cortical microtubule organization. In turn, cortical microtubules further stabilize TMK1- and flotillin1-containing nanoclusters at the PM. Hence, we propose a new paradigm for polarity formation: A diffusive signal triggers cell polarization by promoting cell surface receptor-mediated nanoclustering of signaling components and cytoskeleton-mediated positive feedback that reinforces these nanodomains into polarized domains.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Cell Polarity/physiology , Indoleacetic Acids/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Cell Membrane/metabolism , Cell Polarity/genetics , Lipid Metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Models, Biological , Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , Mutation , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Protein Aggregates , Protein Serine-Threonine Kinases/chemistry , Protein Stability , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...