Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer ; 9(20): 3755-3764, 2018.
Article in English | MEDLINE | ID: mdl-30405847

ABSTRACT

Cervical cancer is one of the most common cancer in female worldwide. The expression of high-risk human papillomavirus E7 oncogene is necessary for the maintenance of malignant phenotypes and transformation. Accumulating studies of this protein has been explored in cervical cancer, however, there are fewer studies on how E7 expression affects the expression of global circular RNA. CircRNA, a promising biomarker and even therapeutic target, has become a star molecular in research after miRNA and long non-coding RNA. Our aim of this study was to investigate the global circRNA levels modulated by HPV E7 expression and identified the potential consequences for mechanism studies. Here we investigated the expression profiles of circRNAs by transfecting E7 siRNA in Caski cells with high-throughput microarray technology. In total, we identified 526 dysregulated circRNAs with fold change ≥2 or≤0.5, and p< 0.05. Among them, 352 were up-regulated and 174 were down-regulated. In addition, 8 selected circRNAs confirmed using qRT-PCR was in line with the results of microarray analysis. Furthermore, bioinformatic analyses indicated that differently expressed circRNAs might implicate in the mTOR signaling pathway, proline metabolism and glutathione metabolism. In conclusion, this study showed the expression profiles of circRNAs regulated by HPV16 E7 in cervical cancer cells and provides novel insights into the new potential candidates for future mechanism studies.

2.
Gynecol Oncol ; 149(1): 188-197, 2018 04.
Article in English | MEDLINE | ID: mdl-29395313

ABSTRACT

OBJECTIVE: Recent evidence suggests an important role of Myosin 1b (Myo1b) in the progression of several cancers, including prostate cancer and head and neck squamous cell carcinoma (HNSCC). However, the contribution of Myo1b to cervical cancer (CC) remains elusive. METHODS: Quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry and western blotting assays were used to confirm the expression of Myo1b in CC tissues compared with matched non-tumor tissues and CC cells, and analyze its clinical significance. In vitro, RNA interference (siRNA or shRNA) was used to investigate the biological function and underlying mechanism of Myo1b in cervical carcinogenesis. Furthermore, tumor growth was evaluated in vivo using a xenogenous subcutaneously implant model. RESULTS: Here, for the first time we reported that Myo1b expression was significantly increased in human CC, compared to cervical intraepithelial neoplasia (CIN) and normal cervical tissues and that the upregulation of Myo1b was significantly correlated with FIGO Stage, HPV infection, lymph node metastasis and pathological grade. In vitro, knockdown of Myo1b significantly suppressed proliferation, migration, and invasion of CaSki and SiHa cells, and markedly decreased the MMP1/MMP9 activities. Also, silencing the expression of Myo1b dramatically repressed tumor growth in a mouse xenograft model. Further investigations showed that HPV16 E6 or E7 could enhance the expression of Myo1b via upregulating c-MYC. CONCLUSION: Taken together, our data suggested a potential role of Myo1b in cervical carcinogenesis and tumor progression and provided novel insights into the mechanism of how this factor promotes cell proliferation, migration, and invasion in CC cells.


Subject(s)
Myosin Type I/biosynthesis , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Animals , Blotting, Western , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Disease Progression , Female , Heterografts , Humans , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Reverse Transcriptase Polymerase Chain Reaction , Uterine Cervical Dysplasia/metabolism , Uterine Cervical Dysplasia/pathology
3.
J Transl Med ; 16(1): 9, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29351801

ABSTRACT

BACKGROUND: Bladder cancer (BCa) is one of the most common cancers in the urinary system among the world. Previous studies suggested that TMEM40 expression level was significantly associated with clinicopathological parameters including histological grade, clinical stage and pT status of bladder cancer. However, the molecular mechanism of TMEM40 in BCa remains poorly understood. METHODS: Real-time quantitative RT-PCR (qRT-PCR) and western blot (WB) were used to examine the expression levels of TMEM40 in BCa tissues, paired non-cancer tissues and cell lines. A series of experiments, including CCK-8, wound healing, flow cytometry, transwell and EdU assays were performed to assess the effects of TMEM40 on cell proliferation, cell cycle and apoptosis, migration and invasion. In addition, tumor growth was evaluated in vivo using a xenogenous subcutaneously implant model. All statistical analyses were executed by using the SPSS 20.0 software. All experimental data from three independent experiments were analyzed by Student's t test and results were expressed as mean ± standard deviation. RESULTS: In this study, we identified the role of TMEM40 in the tumorigenesis of bladder cancer and found that it was upregulated in bladder cancer tissues and cell lines, compared with their normal counterparts. The results demonstrated that effective silence of TMEM40 expression suppressed cell proliferation, blocked G1-to-S cell cycle transition, and inhibited cell migration and invasion in human bladder 5637 and EJ cell lines. Consistently, in vivo data showed that TMEM40 silencing could dramatically decreased tumor growth. Further study revealed that TMEM40 knockdown resulted in accumulation of p53 and p21 protein and decrease of c-MYC and cyclin D1 protein. CONCLUSION: These data suggest that TMEM40 represents a potential oncogene, which exert a crucial role in the proliferation and apoptosis via the p53 signaling pathway in BCa, thus probably serve as a novel candidate biomarker and a potential therapeutic target for patients with BCa.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Gene Knockdown Techniques , Genes, Tumor Suppressor , Genetic Vectors/metabolism , Humans , Membrane Proteins/metabolism , Neoplasm Invasiveness , Oncogenes , RNA, Small Interfering/metabolism , Tumor Suppressor Protein p53/metabolism , Up-Regulation/genetics
4.
Cancer Cell Int ; 16: 21, 2016.
Article in English | MEDLINE | ID: mdl-27006642

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) play pivotal roles in the development of various cancer types, including cervical cancer. METHODS AND RESULTS: In this study, we showed that miR-519d, a miRNA within the chromosome 19 miRNA cluster, was significantly upregulated in cervical cancer tissues, compared with non-tumorous cervical samples. Suppression of miR-519d markedly attenuated the migration and invasion of HeLa and SiHa cervical cancer cells. Additionally, miR-519d inhibited the apoptosis of cervical cancer cells, and the proliferation of cervical cancer cells was also affected following transfection of miR-519d inhibitor. Moreover, we identified Smad7 to be a novel target of miR-519d in cervical cancer cells. MiR-519d matched the 3'-UTR of Smad7 mRNA. Transfection with miR-519d mimics led to apparent downregulation of Smad7 both at the mRNA and protein levels. Luciferase reporter analysis revealed that miR-519d reduced the luciferase activity of Smad7 mRNA 3'-UTR through matching site-dependent manner. And more notably, suppression of Smad7 remarkably restored the migration and invasion of miR-519d-depleted cervical cancer cells. CONCLUSION: Taken together, these findings implicated that miR-519d promoted the progression and metastasis of cervical cancer through targeting Smad7.

5.
Onco Targets Ther ; 9: 899-910, 2016.
Article in English | MEDLINE | ID: mdl-26966378

ABSTRACT

To date, the results of studies exploring the relation between exonuclease 1 (Exo1) polymorphisms and cancer risks have differed. In this study, we performed a meta-analysis to investigate the effect of the three most extensively studied Exo1 polymorphisms (Pro757Leu, Glu589Lys, and Glu670Gly) on cancer susceptibility. The related studies published before August 5, 2015, were collected by searching the PubMed and EMBASE databases. We found 16 publications containing studies that were eligible for our study, including 10 studies for Pro757Leu polymorphism (4,093 cases and 3,834 controls), 12 studies for Glu589Lys polymorphism (6,479 cases and 6,550 controls), and 7 studies for Glu670Gly polymorphism (3,700 cases and 3,496 controls). Pooled odds ratios and 95% confidence intervals were used to assess the strength of the associations, and all the statistical analyses were calculated using the software program STATA version 12.0. Our results revealed that the Pro757Leu polymorphism was significantly associated with a reduced cancer risk, whereas an inverse association was found for the Glu589Lys polymorphism. Furthermore, subgroup analysis of smoking status indicated that the Glu589Lys polymorphism was significantly associated with an increased cancer risk in smokers, but not in nonsmokers. However, no evidence was found for an association between the Glu670Gly polymorphism and cancer risk. In conclusion, this meta-analysis suggests that the Pro757Leu polymorphism may provide protective effects against cancer, while the Glu589Lys polymorphism may be a risk factor for cancer. Moreover, the Glu670Gly polymorphism may have no influence on cancer susceptibility. In the future, large-scaled and well-designed studies are needed to achieve a more precise and comprehensive result.

SELECTION OF CITATIONS
SEARCH DETAIL
...