Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Redox Biol ; 69: 103005, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150991

ABSTRACT

Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.


Subject(s)
Depressive Disorder, Major , Resilience, Psychological , Humans , Mice , Animals , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Antidepressive Agents/pharmacology , Hypoxia , Receptors, Purinergic P2X2/metabolism
2.
J Neurosci ; 44(7)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38124211

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by persistent deficits in social communication and stereotyped behaviors. Although major advances in basic research on autism have been achieved in the past decade, and behavioral interventions can mitigate the difficulties that individuals with autism experience, little is known about the many fundamental issues of the interventions, and no specific medication has demonstrated efficiency for the core symptoms of ASD. Intermittent hypobaric hypoxia (IHH) is characterized by repeated exposure to lowered atmospheric pressure and oxygen levels, which triggers multiple physiological adaptations in the body. Here, using two mouse models of ASD, male Shank3B -/- and Fmr1 -/y mice, we found that IHH training at an altitude of 5,000 m for 4 h per day, for 14 consecutive days, ameliorated autistic-like behaviors. Moreover, IHH training enhanced hypoxia inducible factor (HIF) 1α in the dorsal raphe nucleus (DRN) and activated the DRN serotonergic neurons. Infusion of cobalt chloride into the DRN, to mimic IHH in increasing HIF1α expression or genetically knockdown PHD2 to upregulate HIF1α expression in the DRN serotonergic neurons, alleviated autistic-like behaviors in Shank3B -/- mice. In contrast, downregulation of HIF1α in DRN serotonergic neurons induced compulsive behaviors. Furthermore, upregulating HIF1α in DRN serotonergic neurons increased the firing rates of these neurons, whereas downregulation of HIF1α in DRN serotonergic neurons decreased their firing rates. These findings suggest that IHH activated DRN serotonergic neurons via upregulation of HIF1α, and thus ameliorated autistic-like phenotypes, providing a novel therapeutic option for ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Male , Animals , Autistic Disorder/genetics , Autistic Disorder/therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Dorsal Raphe Nucleus , Serotonergic Neurons/physiology , Hypoxia , Phenotype , Fragile X Mental Retardation Protein
3.
Sheng Li Xue Bao ; 73(3): 518-526, 2021 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-34230953

ABSTRACT

Cyclic adenosine monophosphate (cAMP) is one of the significant and conserved second messengers in mammals, and it participates in regulating the developmental and physiological functions of various organs and tissues through transducting extracellular signals. Studies have shown that the process of meiosis in female mammalian oocytes is closely related to the level of cAMP and strictly regulated. In oocytes, cAMP is mainly synthesized by adenylate cyclase 3 (AC3) and degraded by phosphodiesterase 3A (PDE3A), both of which jointly regulate the level of cAMP in oocytes and play important roles in the follicular development and oogenesis of female ovaries. It has been well illuminated that high level of cAMP in the cytoplasm of oocytes in growing follicles could maintain the arrest of the first meiotic of oocytes for a long time. The oocytes will resume meiosis and mature either when the synthesis of cAMP is down-regulated, or when cAMP is degraded by PDE3A. In recent years, the novo physiological functions of cAMP in oogenesis have been reported. To better understand the regulatory role and mechanism of cAMP in mammalian gametogenesis, this paper reviews the relevant research regarding the relationship between cAMP and germ cell development.


Subject(s)
Cyclic AMP , Meiosis , Adenosine Monophosphate , Animals , Female , Mammals , Oocytes , Oogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...