Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1340168, 2024.
Article in English | MEDLINE | ID: mdl-38456003

ABSTRACT

The intestinal bacteria of longhorn beetles would be ideal targets for pest control and lignocellulosic resources by destroying or exploiting their cellulose-degrading function. This article aims to investigate the diversity and community structure of intestinal bacteria the oligophagous longhorn beetle Glenea cantor. Additionally, it seeks to identify the presence of lignocellulose-degrading bacteria in the gut, and explore their role in consuming host kapok trees Bombax malabaricum. In this study, the bacterial community from G. cantor was examined by Illumina sequencing of 16S ribosomal RNA (rRNA) targeting the V3 and V4 regions. A total of 563,201 valid sequences and 814 OTUs were obtained. The dominant phyla were Proteobacteria, and the dominant genera were Acinetobacter and Lactococcus. The analysis of microbial diversity revealed a high bacterial diversity in the samples, with the gut bacteria playing a crucial role in the physiological activities of the host, particularly, 9 genera of intestinal bacteria with cellulose degradation function were found, highlighting their vital role in cellulose degradation. Five strains of cellulose-degrading bacteria, belonging to the genus Pseudomonas, were obtained from the intestinal tract of G. cantor larvae using traditional isolation and culture techniques as well as 16S rDNA sequencing. Among these strains, A4 exhibited a cellulase activity of 94.42 ± 0.42 U/mL, while A5 displayed the highest filter paper enzyme activity of 127.46 ± 3.54 U/mL. These results offered valuable insights into potential targets for pest control through internal attack digestion and cellulose-degrading bacteria in longhorn beetles.

2.
Neurosurg Rev ; 47(1): 83, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363437

ABSTRACT

Fully endoscopic microvascular decompression (MVD) of the facial nerve is the main surgical treatment for hemifacial spasm. However, the technique presents distinct surgical challenges. We retrospectively analyzed prior cases to consolidate surgical insights and assess clinical outcomes. Clinical data from 16 patients with facial nerve spasms treated at the Department of Neurosurgery in the First Affiliated Hospital of Bengbu Medical College, between August 2020 and July 2023, were retrospectively examined. Preoperatively, all patients underwent magnetic resonance angiography to detect any offending blood vessels; ascertain the relationship between offending vessels, facial nerves, and the brainstem; and detect any cerebellopontine angle lesions. Surgery involved endoscopic MVD of the facial nerve using a mini Sigmoid sinus posterior approach. Various operative nuances were summarized and analyzed, and clinical efficacy, including postoperative complications and the extent of relief from facial paralysis, was evaluated. Fully endoscopic MVD was completed in all patients, with the offending vessels identified and adequately padded during surgery. The offending vessels were anterior inferior cerebellar artery in 12 cases (75%), vertebral artery in 3 cases (18.75%), and posterior inferior cerebellar artery in 1 case (6.25%). Intraoperative electrophysiological monitoring revealed that the lateral spread response of the facial nerve vanished in 15 cases and remained unchanged in 1 case. Postoperative facial spasms were promptly alleviated in 15 cases (93.75%) and delayed in 1 case (6.25%). Two cases of postoperative complications were recorded-one intracranial infection and one case of tinnitus-both were resolved or mitigated with treatment. All patients were subject to follow-up, with no instances of recurrence or mortality. Fully endoscopic MVD of the facial nerve is safe and effective. Proficiency in endoscopy and surgical skills are vital for performing this procedure.


Subject(s)
Facial Nerve Diseases , Hemifacial Spasm , Microvascular Decompression Surgery , Humans , Hemifacial Spasm/surgery , Hemifacial Spasm/etiology , Microvascular Decompression Surgery/adverse effects , Retrospective Studies , Facial Nerve Diseases/surgery , Treatment Outcome , Endoscopy , Postoperative Complications/etiology
3.
Insects ; 14(8)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37623425

ABSTRACT

At present, sexual attractants mainly control insect populations by killing males. However, the effect of sex attractants may be limited by the mating ability of the attracted insects. The Oriental fruit fly, Bactrocera dorsalis (Hendel), has a strong reproductive capacity; it brings great losses to agricultural production, which can be controlled by methods using sex attractant methyl eugenol that mainly attracts males. Therefore, we studied the multiple and continuous (as well as consecutive) mating ability of B. dorsalis through behavioral experiments. The results show that male B. dorsalis can mate 11 times on average, with females mating only 1.93 times, and that 10.81% of males mate more than 20 times. The reproductive capacity of male B. dorsalis decreased significantly after four to five instances of continuous mating. In different mating patterns, the reproductive fitness of polyandry is not the highest, rather, interval mating is the best. A limiting factor of the sex attractant effect was revealed in B. dorsalis through behavioral evidence.

4.
Article in English | MEDLINE | ID: mdl-37478664

ABSTRACT

Quadrastichus mendeli Kim is one of the most important parasitoids of Leptocybe invasa Fisher et La Salle, which is an invasive gall-making pest in eucalyptus plantations in the world. Gall-inducing insects live within plant tissues and induce tumor-like growths that provide the insects with food, shelter, and protection from natural enemies. Empirical evidences showed that sensory genes play a key role in the host location of parasitoids. So far, what kind of sensory genes regulate parasitoids to locate gall-inducing insects has not been uncovered. In this study, sensory genes in the antenna and abdomen of Q. mendeli were studied using high-throughput sequencing. In total, 181,543 contigs was obtained from the antenna and abdomen transcriptome of Q. mendeli. The major sensory genes (chemosensory proteins, CSPs; gustatory receptors, GRs; ionotropic receptors, IRs; odorant binding proteins, OBPs; odorant receptors, ORs; and sensory neuron membrane proteins, SNMPs) were identified, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. The gene co-expression network constructed by WGCNA method is robust and reliable. There were 10,314 differentially expressed genes (DEGs), and among them, 99 genes were DEGs. A comprehensive sequence resource with desirable quality was built by comparative transcriptome of the antenna and abdomen of Q. mendeli, enriching the genomic platform of Q. mendeli.


Subject(s)
Hymenoptera , Receptors, Odorant , Animals , Transcriptome , Phylogeny , Hymenoptera/genetics , Gene Expression Profiling , Receptors, Odorant/genetics , Abdomen , Insect Proteins/genetics , Arthropod Antennae/metabolism
5.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298448

ABSTRACT

Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.


Subject(s)
Citrus , Hemiptera , Animals , Female , Vitellogenins/genetics , Hemiptera/genetics , Hydroponics , Pest Control
6.
Insect Sci ; 30(1): 232-240, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35656827

ABSTRACT

Male animals often adjust their sperm investment in response to sperm competition environment. To date, only a few studies have investigated how juvenile sociosexual settings affect sperm production before adulthood and sperm allocation during the first mating. Yet, it is unclear whether juvenile sociosexual experience (1) determines lifetime sperm production and allocation in any animal species; (2) alters the eupyrene : apyrene sperm ratio in lifetime ejaculates of any lepidopteran insects, and (3) influences lifetime ejaculation patterns, number of matings and adult longevity. Here we used a polygamous moth, Ephestia kuehniella, to address these questions. Upon male adult emergence from juveniles reared at different density and sex ratio, we paired each male with a virgin female daily until his death. We dissected each mated female to count the sperm transferred and recorded male longevity and lifetime number of matings. We demonstrate for the first time that males ejaculated significantly more eupyrenes and apyrenes in their lifetime after their young were exposed to juvenile rivals. Adult moths continued to produce eupyrene sperm, contradicting the previous predictions for lepidopterans. The eupyrene : apyrene ratio in the lifetime ejaculates remained unchanged in all treatments, suggesting that the sperm ratio is critical for reproductive success. Male juvenile exposure to other juveniles regardless of sex ratio caused significantly shorter adult longevity and faster decline in sperm ejaculation over successive matings. However, males from all treatments achieved similar number of matings in their lifetime. This study provides insight into adaptive resource allocation by males in response to juvenile sociosexual environment.


Subject(s)
Moths , Male , Female , Animals , Moths/physiology , Health Expenditures , Sexual Behavior, Animal/physiology , Semen , Spermatozoa/physiology
7.
Insects ; 13(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36292862

ABSTRACT

Exploring the pathogenicity of a new fungus strain to non-target host pests can provide essential information on a large scale for potential application in pest control. In this study, we tested the pathogenicity of Beauveria bassiana PfBb on the important agricultural pest Spodoptera frugiperda (Lepidoptera: Noctuidae) by determining the relative activities of protective enzymes and detoxifying enzymes in different larval instars. Our results show that the B. bassiana PfBb strain could infect all six larval instars of S. frugiperda, and its virulence to S. frugiperda larvae gradually increased with an increase in spore concentration. Seven days after inoculation, the LC50 of B. bassiana PfBb was 7.7 × 105, 5.5 × 106, 2.2 × 107, 3.1 × 108, 9.6 × 108, and 2.5 × 1011 spores/mL for first to sixth instars of S. frugiperda, respectively, and the LC50 and LC90 of B. bassiana PfBb for each S. frugiperda instar decreased with infection time, indicating a significant dose effect. Furthermore, the virulence of B. bassiana PfBb to S. frugiperda larvae gradually decreased with an increase in larval instar. The activities of protective enzymes (i.e., catalase, peroxidase, and superoxide dismutase) and detoxifying enzymes (i.e., glutathione S-transferases, carboxylesterase, and cytochrome P450) in S. frugiperda larvae of the first three instars infected with B. bassiana PfBb changed significantly with infection time, but such variations were not obvious in the fifth and sixth instars. Additionally, after being infected with B. bassiana PfBb, the activities of protective enzymes and detoxification enzymes in S. frugiperda larvae usually lasted from 12 to 48 h, which was significantly longer than the control. These results indicate that the pathogenicity of B. bassiana PfBb on the non-target host S. frugiperda was significant but depended on the instar stage. Therefore, the findings of this study suggest that B. bassiana PfBb can be used as a bio-insecticide to control young larvae of S. frugiperda in an integrated pest management program.

8.
Front Surg ; 9: 971063, 2022.
Article in English | MEDLINE | ID: mdl-36157417

ABSTRACT

Background: The fully endoscopic supraorbital trans-eyebrow keyhole approach is a technique utilized for the transcranial resection of tuberculum sellae meningioma (TSM). Surgery is the first choice for TSM treatment. This study aimed to summarize and analyze the safety, feasibility, limitations, and technical requirements of the fully endoscopic supraorbital trans-eyebrow keyhole approach for TSM resection. Methods: Data of 19 TSM fully endoscopic supraorbital trans-eyebrow keyhole approach resections cases (six and 13 on the left and right eyebrows, respectively) were retrospectively analyzed at the Neurosurgery Department of the First Affiliated Hospital of Bengbu Medical College (Bengbu, China) from August 2015 to March 2022. Results: All 19 patients were diagnosed with meningioma (World Health Organization grade I), and according to the scope of tumor resection (EOR), 18 patients (94.7%) had gross total resection (GTR), and one patient (5.3%) had near-total resection (NTR). Preoperative chief complaints were symptomatic visual dysfunction (n = 12), headache and dizziness (n = 6), and accidental discovery (n = 1). Postoperative visual function improved in 83.3% of cases (10/12), and headache and dizziness were relieved in 83.3% of cases (5/6 patients). Postoperative intracranial infection occurred in one case and was cured by external drainage of the lumbar cistern and anti-infective treatment. Two cases of frontal lobe injury were discharged after conservative treatment. There was no postoperative olfactory dysfunction, eyelid ptosis, cerebrospinal fluid leakage, or death. There were no reports of disease recurrence or death during the 3-month follow-up at an outpatient clinic or by telephone. Conclusion: Fully endoscopic TSM resection through the keyhole approach is safe and feasible. It can be used to explore angles that cannot be seen under a microscope and show the true value of endoscopy technology. The endoscopic equipment and technical skills of the surgeon and surgical team are important in this technique.

9.
J Clin Neurosci ; 103: 62-71, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35816766

ABSTRACT

BACKGROUND: In the surgical approach to treat deep-seated intracranial lesions, endoscopes can be used to assist microsurgical operations and improve outcomes. This technique is often called endoscope-assisted microneurosurgery (EAM). This systematic review and meta-analysis aimed to evaluate the feasibility, safety, and effectiveness of EAM. METHODS: We performed a meta-analysis of relevant articles identified using PubMed, Embase, and the Cochrane Central Register to assess the efficacy of EAM according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Primary outcomes were repositioning of the definitive clip, better surgical field, the overall and endoscope-related complication rates, mortality, and the rate of follow up. RESULTS: A total of 10 studies of 1,432 patients with 1,717 aneurysms treated with EAM were included. EAM led to repositioning of the definitive clip in 13% (95% CI, 9%-17%; I2 = 72.61%; p < 0.001); 77% of aneurysms treated with endoscopically assisted vision and information had a better outcome than that with standard surgery (95% CI, 52%-95%; I2 = 97.63%; p < 0.001). There was an overall complication rate of 6% (95% CI, 1%-13%; I2 = 91.39%; p < 0.001). The incidence of endoscope-related complications was 0% (95% CI, 0%-1%; I2 = 64%; p < 0.001). The mortality was 0% (95% CI, 0-1%; I2 = 0.0%); and 94% of patients had an excellent to good recovery and good outcome (95% CI, 88%-98%; I2 = 88.42%; p < 0.001). CONCLUSIONS: Our comprehensive study showed that EAM for intracranial aneurysms is feasible, the safety of the surgery is good, and the patients have a good prognosis, Therefore, we think EAM can be more widely adopted in the future.


Subject(s)
Intracranial Aneurysm , Endoscopes , Humans , Microsurgery , Surgical Instruments , Treatment Outcome
10.
Front Physiol ; 13: 907694, 2022.
Article in English | MEDLINE | ID: mdl-35846004

ABSTRACT

Olfactory and gustatory systems play an irreplaceable role in all cycles of growth of insects, such as host location, mating, and oviposition. Many chemosensory genes in many nocturnal moths have been identified via omics technology, but knowledge of these genes in diurnal moths is lacking. In our recent studies, we reported two sex pheromone compounds and three host plant volatiles that play a vital role in attracting the diurnal moth, Phauda flammans. The antennal full-length transcriptome sequence of P. flammans was obtained using the Pacbio sequencing to further explore the process of sex pheromone and host plant volatile recognition in P. flammans. Transcriptome analysis identified 166 candidate olfactory and gustatory genes, including 58 odorant-binding proteins (OBPs), 19 chemosensory proteins (CSPs), 59 olfactory receptors (ORs), 16 ionotropic receptors (IRs), 14 gustatory receptors (GRs), and 2 sensory neuron membrane proteins (SNMPs). Subsequently, a phylogenetic tree was established using P. flammans and other lepidopteran species to investigate orthologs. Among the 17 candidate pheromone receptor (PR) genes, the expression levels of PflaOR21, PflaOR25, PflaOR35, PflaOR40, PflaOR41, PflaOR42, PflaOR44, PflaOR49, PflaOR51, PflaOR61, and PflaOR63 in the antennae were significantly higher than those in other non-antennae tissues. Among these PR genes, PflaOR21, PflaOR27, PflaOR29, PflaOR35, PflaOR37, PflaOR40, PflaOR42, PflaOR44, PflaOR60, and PflaOR62 showed male-biased expression, whereas PflaOR49, PflaOR61, and PflaOR63 revealed female-biased expression. The functions of related OR genes were also discussed. This research filled the gap of the chemosensory genes of P. flammans and provided basic data for future functional molecular mechanisms studies on P. flammans olfaction.

11.
Front Genet ; 13: 903117, 2022.
Article in English | MEDLINE | ID: mdl-35692827

ABSTRACT

Background: Gliomas are the most common and fatal malignant type of tumor of the central nervous system. RNA post-transcriptional modifications, as a frontier and hotspot in the field of epigenetics, have attracted increased attention in recent years. Among such modifications, methylation is most abundant, and encompasses N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1 methyladenosine (m1A), and 7-methylguanosine (m7G) methylation. Methods: RNA-sequencing data from healthy tissue and low-grade glioma samples were downloaded from of The Cancer Genome Atlas database along with clinical information and mutation data from glioblastoma tumor samples. Forty-nine m6A/m5C/m1A/m7G-related genes were identified and an m6A/m5C/m1A/m7G-lncRNA signature of co-expressed long non-coding RNAs selected. Least absolute shrinkage and selection operator Cox regression analysis was used to identify 12 m6A/m5C/m1A/m7G-related lncRNAs associated with the prognostic characteristics of glioma and their correlation with immune function and drug sensitivity analyzed. Furthermore, the Chinese Glioma Genome Atlas dataset was used for model validation. Results: A total of 12 m6A/m5C/m1A/m7G-related genes (AL080276.2, AC092111.1, SOX21-AS1, DNAJC9-AS1, AC025171.1, AL356019.2, AC017104.1, AC099850.3, UNC5B-AS1, AC006064.2, AC010319.4, and AC016822.1) were used to construct a survival and prognosis model, which had good independent prediction ability for patients with glioma. Patients were divided into low and high m6A/m5C/m1A/m7G-LS groups, the latter of which had poor prognosis. In addition, the m6A/m5C/m1A/m7G-LS enabled improved interpretation of the results of enrichment analysis, as well as informing immunotherapy response and drug sensitivity of patients with glioma in different subgroups. Conclusion: In this study we constructed an m6A/m5C/m1A/m7G-LS and established a nomogram model, which can accurately predict the prognosis of patients with glioma and provides direction toward promising immunotherapy strategies for the future.

12.
Front Surg ; 9: 882694, 2022.
Article in English | MEDLINE | ID: mdl-35747436

ABSTRACT

Background: Langerhans cell sarcoma (LCS) is an extremely rare type of malignant tumor that originates from Langerhans cells (LC). It is characterized by the malignant proliferation and dissemination of LC and is extremely invasive, with rapid progression and a poor prognosis. Treatment includes resection of lesions, radiotherapy, chemotherapy, immunotherapy, and transplantation of hematopoietic stem cells. However, a unified and optimized treatment plan is lacking, and individualized treatment is accepted. Case presentation: We report an 18-year-old man with intracranial and extracranial communicative LCS that occurred in only the left forehead without metastasis to other regions. Clinical and hematological data were normal. We undertook complete resection of diseased tissue, which was pathologically examined. Staining (hematoxylin and eosin) showed positivity for cluster of differentiation (CD)1a (++), S-100 protein (++), P53 (++), CD68 (+), cyclin D1 (+), cyclin A (+), cyclin B1 (+), IGF2BP3 (+), and Ki-67 (45%-50%). Recurrence or metastasis were not observed after long-term follow-up. Conclusion: LCS is a rare malignant tumor, and one that occurs with intracranial and extracranial communication is even rarer. Active adoption of an individualized treatment plan is crucial.

13.
Insects ; 13(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35735890

ABSTRACT

Glenea cantor Fabricius (Cerambycidae: Lamiinae) is a pest that devastates urban landscapes and causes ecological loss in southern China and Southeast Asian countries where its main host kapok trees are planted. The olfactory system plays a vital role in mating, foraging, and spawning in G. cantor as an ideal target for pest control. However, the olfactory mechanism of G. cantor is poorly understood at the molecular level. In this study, we first established the antennal transcriptome of G. cantor and identified 76 olfactory-related genes, including 29 odorant binding proteins (OBPs), 14 chemosensory proteins (CSPs), 13 odorant receptors (ORs), 18 ionotropic receptors (IRs) and 2 sensory neuron membrane proteins (SNMPs). Furthermore, the phylogenetic trees of olfactory genes were constructed to study the homology with other species of insects. We also verified the reliability of transcriptome differential genes by qRT-PCR, which indicated the reliability of the transcriptome. Based on the relative expression of 30 d adults, GcanOBP22 and GcanOBP25 were highly expressed not only in the antennae, but also in the wings and legs. In addition, GcanCSP4 was the highest expression on the female antennae at 12 d. These findings laid the foundation for further research on the mechanism of G. cantor olfactory mechanism at the molecular level.

14.
Sci Rep ; 12(1): 9892, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701459

ABSTRACT

Neuropeptides and neuropeptide receptors are crucial regulators to insect physiological processes. The 21.0 Gb bases were obtained from Illumina sequencing of two libraries representing the female and male heads of Phauda flammans (Walker) (Lepidoptera: Phaudidae), which is a diurnal defoliator of ficus plants and usually outbreaks in the south and south-east Asia, to identify differentially expressed genes, neuropeptides and neuropeptide receptor whose tissue expressions were also evaluated. In total, 99,386 unigenes were obtained, in which 156 up-regulated and 61 down-regulated genes were detected. Fifteen neuropeptides (i.e., F1b, Ast, NP1, IMF, Y, BbA1, CAP2b, NPLP1, SIF, CCH2, NP28, NP3, PDP3, ARF2 and SNPF) and 66 neuropeptide receptor genes (e.g., A2-1, FRL2, A32-1, A32-2, FRL3, etc.) were identified and well-clustered with other lepidopteron. This is the first sequencing, identification neuropeptides and neuropeptide receptor genes from P. flammans which provides valuable information regarding the molecular basis of P. flammans.


Subject(s)
Lepidoptera , Neuropeptides , Animals , Female , Lepidoptera/genetics , Lepidoptera/metabolism , Male , Neuropeptides/genetics , Neuropeptides/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism
15.
J Clin Lab Anal ; 36(6): e24448, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35446994

ABSTRACT

BACKGROUND: Schwannomatosis is the third subtype of neurofibromatosis. Schwannomatosis, particularly the familial variant, is uncommon. Recently, germline mutations of the SMARCB1 gene have been found to cause schwannomatosis. In this report, we describe a case of familial inherited intraspinal schwannomatosis. Postoperative pathology indicated a schwannoma. The results of gene testing showed that the SMARCB1 gene had a spliced mutation. CASE DESCRIPTION: A patient with a rare case of familial intraluminal schwannomatosis was admitted to our hospital. Peripheral blood gene testing was performed on the patient and her son, and a splice mutation of the SMARCB1 gene located at C. 1118+1G>A on intron 8 was identified. CONCLUSIONS: Schwannomatosis is an incomplete dominant autosomal dominant genetic disorder. The structural and functional abnormalities of proteins caused by mutations in the SMARCB1 gene may be the molecular basis for familial schwannomatosis.


Subject(s)
Neurilemmoma , Neurofibromatoses , Female , Humans , Mutation/genetics , Neurilemmoma/diagnostic imaging , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/genetics , Neurofibromatoses/pathology , SMARCB1 Protein/genetics , Skin Neoplasms , Transcription Factors/genetics
16.
Pest Manag Sci ; 78(6): 2405-2416, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35289069

ABSTRACT

BACKGROUND: Although parasitoids can precisely locate hidden gall-inducing insects, the host location mechanism is unknown. In this study, our aim was to clarify the olfactory responses of the parasitoid Quadrastichus mendeli to eucalyptus volatiles induced by the gall wasp Leptocybe invasa. RESULTS: Q. mendeli preferred volatiles from gall-damaged plants compared with those produced by mechanically damaged and undamaged plants. Coupled gas chromatographic-electroantennographic detection results demonstrated that 3-carene, decanal, d-limonene, ethanone,1-(4-ethylphenyl)-, p-cymene and benzene,1-methyl-4-(1-methylpropyl)- from DH 201-2 (Eucalyptus grandis × Eucalyptus tereticornis) elicited significant antennal responses in Q. mendeli in all treatments. Q. mendeli was repelled by decanal and d-limonene and was attracted to 3-carene, benzene,1-methyl-4-(1-methylpropyl)-, ethanone,1-(4-ethylphenyl) and p-cymene. Quaternary blends containing 3-carene, p-cymene, benzene,1-methyl-4-(1-methylpropyl)- and ethanone,1-(4-ethylphenyl)- at a ratio of 1:1:1:1 were attractive to Q. mendeli. However, quaternary blends with added decanal and d-limonene alone or both together induced significant repellence in Q. mendeli. CONCLUSION: Our report is the first to demonstrate that volatiles produced by galls induced by L. invasa are attractive to Q. mendeli, which suggests that this parasitoid could utilize herbivore-induced plant volatiles to locate its host. The results are beneficial for understanding the function of plant volatiles in host searching by parasitoids of gall-forming insect pests. © 2022 Society of Chemical Industry.


Subject(s)
Eucalyptus , Wasps , Animals , Benzene , Limonene
17.
Curr Zool ; 68(1): 1-8, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169624

ABSTRACT

Socio-sexual environment can have critical impacts on reproduction and survival of animals. Consequently, they need to prepare themselves by allocating more resources to competitive traits that give them advantages in the particular social setting they have been perceiving. Evidence shows that a male usually raises his investment in sperm after he detects the current or future increase of sperm competition because relative sperm numbers can determine his paternity share. This leads to the wide use of testis size as an index of the sperm competition level, yet testis size does not always reflect sperm production. To date, it is not clear whether male animals fine-tune their resource allocation to sperm production and other traits as a response to social cues during their growth and development. Using a polygamous insect Ephestia kuehniella, we tested whether and how larval social environment affected sperm production, testis size, and body weight. We exposed the male larvae to different juvenile socio-sexual cues and measured these traits. We demonstrate that regardless of sex ratio, group-reared males produced more eupyrenes (fertile and nucleate sperm) but smaller testes than singly reared ones, and that body weight and apyrene (infertile and anucleate sperm) numbers remained the same across treatments. We conclude that the presence of larval social, but not sexual cues is responsible for the increase of eupyrene production and decrease of testis size. We suggest that male larvae increase investment in fertile sperm cells and reduce investment in other testicular tissues in the presence of conspecific juvenile cues.

18.
Microb Ecol ; 83(1): 151-166, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33758980

ABSTRACT

Symbioses between invasive insects and bacteria are one of the key drivers of insect invasion success. Gall-inducing insects stimulate host plants to produce galls, which affects the normal growth of plants. Leptocybe invasa Fisher et La Salle, an invasive gall-inducing wasp, mainly damages Eucalyptus plantations in Southern China, but little is known about its associated bacteria. The aim of this study was to assess the diversity of bacterial communities at different developmental stages of L. invasa and to identify possible ecological functions of the associated bacteria. Bacteria associated with L. invasa were isolated using culture-dependent methods and their taxonomic statuses were determined by sequencing the 16S rRNA gene. A total of 88 species belonging to four phyla, 27 families, and 44 genera were identified by phylogenetic analysis. The four phyla were Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, mainly from the genera Pantoea, Enterobacter, Pseudomonas, Bacillus, Acinetobacter, Curtobacterium, Sphingobium, Klebsiella, and Rhizobium. Among them, 72 species were isolated in the insect gall stage and 46 species were isolated from the adult stage. The most abundant bacterial species were γ-Proteobacteria. We found significant differences in total bacterial counts and community compositions at different developmental stages, and identified possible ecological roles of L. invasa-associated bacteria. This study is the first to systematically investigate the associated bacteria of L. invasa using culture-dependent methods, and provides a reference for other gall-inducing insects and associated bacteria.


Subject(s)
Eucalyptus , Wasps , Animals , Bacteria/genetics , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Wasps/microbiology
19.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613830

ABSTRACT

Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.


Subject(s)
Lepidoptera , Moths , Sex Attractants , Animals , Female , Male , Moths/physiology , Pheromones/metabolism , Sex Attractants/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Molecular Docking Simulation , Insect Proteins/metabolism
20.
Microsc Res Tech ; 85(4): 1311-1319, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34799959

ABSTRACT

This study used scanning electron microscopy (SEM) to observe the morphology and sensilla of the labial and maxillary palps of adult Callidiellum villosulum Fairmaire between sexes. Combining behavioral activities may provide an effective control target for this pest. In this study, the results showed that there were three segments on the labial palps and four segments on the maxillary palps. The length and width of each segment of the labial and maxillary palps were significantly larger in females than in males. Four types of sensilla were found on the labial and maxillary palps of both sexes of adult C. villosulum: sensilla basiconica (SB I, II, III, and IV), sensilla chaetica (SCh I and II), sensilla placodea (SP), and sensilla campaniformia (SCa). SB IV, SCa, and Sh II were significantly more developed on female labial and maxillary palps than on males', which may be related to their oviposition behavior. By contrast, SB I was more significantly developed on males than on females, which may be related to their mating selection. At the same time, for both sexes, the numbers of Sh I and Sh II on the maxillary palps were significantly higher on labial palps. Maxillary palps could be inferred to potentially play a more important role than the labial palps in the activities of adult C. villosulum. Results will help us further understand the host selection and egg-laying behavior of adult C. villosulum. Such an understanding shall greatly promote the information-based design of pest control methods.


Subject(s)
Coleoptera , Sensilla , Animals , Arthropod Antennae , Coleoptera/anatomy & histology , Female , Male , Microscopy, Electron, Scanning , Oviposition
SELECTION OF CITATIONS
SEARCH DETAIL
...