Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Sheng Li Xue Bao ; 74(6): 1005-1013, 2022 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-36594388

ABSTRACT

The TRPC family consists of multiple important cationic channels in mammals that participate in a variety of physiological and pathological processes. Our previous studies have shown that transforming growth factor-ß1 (TGF-ß1) increases the expression of TRPC6 in podocytes, but the roles of other members of the TRPC family in podocytes require further investigation. In this study, we investigated the effect of TGF-ß1 on the expression of the TRPC family and the role of the TRPC family in the changes of the intracellular Ca2+ concentration ([Ca2+]i) in podocytes induced by TGF-ß1. The model of podocyte injury was established by treatment with TGF-ß1 in immortalized glomerular podocytes (MPC5) in vitro. qRT-PCR and Western blot were used to detect the effect of TGF-ß1 on the mRNA and protein expression of each TRPC family member. After the expression of each TRPC family member was knocked down by a siRNA-based approach and blocked by SKF96365, respectively, free cytosolic Ca2+ was measured using the fluorescent Ca2+ indicator Fluo-3/AM, and the dynamic change of [Ca2+]i in podocytes was detected by a dynamic high-speed calcium imaging system. The results showed that TGF-ß1 increased the protein expression of TRPC1/3/6 in podocytes, but had no effects on the protein expression of TRPC4. The protein expression levels of TRPC5/7 were only affected by 4 ng/mL and 8 ng/mL TGF-ß1, respectively. TGF-ß1 increased TRPC1/3/6 mRNA levels in podocytes, however had no effects on TRPC4/5/7 mRNA. TGF-ß1 significantly increased [Ca2+]i in podocytes. Knockdown of TRPC1/4/5/7 in podocytes had no significant effect on the [Ca2+]i induced by TGF-ß1, but TRPC3/6 knockdown significantly decreased the [Ca2+]i. There was no significant difference in the [Ca2+]i between the TRPC6 siRNA-treated group and SKF96365-treated group, but the [Ca2+]i of the TRPC3 siRNA-treated group was significantly higher than that of SKF96365-treated group. These results demonstrate that TGF-ß1 increases the expression of the TRPC1/3/6 in podocytes. TGF-ß1 increases [Ca2+]i in podocytes, which is dependent on the TRPC3/6 expression. Our results also suggest that the effect of TRPC6 on [Ca2+]i in podocytes may be greater than that of TRPC3.


Subject(s)
Calcium , Podocytes , Animals , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , Calcium/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , Podocytes/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , RNA, Small Interfering/metabolism , RNA, Messenger/metabolism , Mammals/genetics , Mammals/metabolism
2.
Appl Microbiol Biotechnol ; 97(14): 6189-99, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23640364

ABSTRACT

Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.


Subject(s)
Cellulose/biosynthesis , Gluconacetobacter xylinus/metabolism , Cellulose/chemistry , Culture Media/metabolism , Fructose/metabolism , Gluconacetobacter xylinus/chemistry , Glucose/metabolism , Glycerol/metabolism , Metabolic Flux Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...