Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Med Virol ; 96(7): e29805, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011773

ABSTRACT

Heterogeneous nuclear protein U (HNRNPU) plays a pivotal role in innate immunity by facilitating chromatin opening to activate immune genes during host defense against viral infection. However, the mechanism by which HNRNPU is involved in Hepatitis B virus (HBV) transcription regulation through mediating antiviral immunity remains unknown. Our study revealed a significant decrease in HNRNPU levels during HBV transcription, which depends on HBx-DDB1-mediated degradation. Overexpression of HNRNPU suppressed HBV transcription, while its knockdown effectively promoted viral transcription, indicating HNRNPU as a novel host restriction factor for HBV transcription. Mechanistically, HNRNPU inhibits HBV transcription by activating innate immunity through primarily the positive regulation of the interferon-stimulating factor 2'-5'-oligoadenylate synthetase 3, which mediates an ribonuclease L-dependent mechanism to enhance innate immune responses. This study offers new insights into the host immune regulation of HBV transcription and proposes potential targets for therapeutic intervention against HBV infection.


Subject(s)
2',5'-Oligoadenylate Synthetase , Hepatitis B virus , Immunity, Innate , Transcription, Genetic , Humans , Hepatitis B virus/immunology , Hepatitis B virus/genetics , 2',5'-Oligoadenylate Synthetase/genetics , 2',5'-Oligoadenylate Synthetase/metabolism , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Hep G2 Cells , Hepatitis B/immunology , Hepatitis B/virology , Hepatitis B/genetics , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , Viral Regulatory and Accessory Proteins/immunology , Trans-Activators
2.
Clin Oral Investig ; 28(5): 296, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700536

ABSTRACT

OBJECTIVES: The purpose of the present study was to evaluate the prevalence of somatic pain in orthodontic patients and determine whether somatic pain contributes to worsening oral health-related quality of life (OHRQoL) through the mediating effect of psychological discomfort. MATERIALS AND METHODS: Scale measurements and analyses were conducted on a cohort of 769 orthodontic outpatients, encompassing Patient Health Questionnaire-15-pain (PHQ-15-P), Hua-Xi Emotional-Distress Index (HEI), Psychosocial Impact of Dental Aesthetics Questionnaire (PIDAQ), and Oral Health Impact Profile-14 (OHIP-14). RESULTS: Among the respondents, 56.3% (N = 433) reported somatic pain and 20.0% (N = 154) had mental discomfort based on PHQ-15-P and HEI scores. Patients with somatic pain symptoms had significantly higher scores of HEI and OHIP-14 (P < 0.001), and higher PHQ-15-P and HEI scores emerged as statistically significant predictors of lower OHIP-14 scores (P < 0.001). HEI scores which assessed anxiety and depression partially mediated the correlation between PHQ-15-P and OHIP-14 scores, of which anxiety accounted for 52.9% of the overall mediation effect, dominating the indirect effect. CONCLUSION: Orthodontic patients reporting somatic pains were at a significantly higher risk of worsening OHRQoL during treatment, and this adverse effect is partially mediated by anxiety and depression. CLINICAL RELEVANCE: Our findings highlight the necessity for the assessment of general health and mental well-being during orthodontic interventions. To prevent delays in treating general disorders and the potential failure of orthodontic treatments, we encourage increased attentiveness towards patients with somatic symptoms and consideration of the adverse effects of comorbid mental distress.


Subject(s)
Oral Health , Quality of Life , Humans , Female , Male , Surveys and Questionnaires , Adolescent , Prevalence , Adult , Comorbidity , Psychological Distress , Nociceptive Pain/epidemiology , Nociceptive Pain/psychology , Pain Measurement
3.
Plants (Basel) ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38202433

ABSTRACT

During fresh-cut processing, potatoes lose their inherent protective cellular structure, leading to enzymatic browning that compromises sensory and edible quality. Tea polyphenols (TPs), natural preservatives with potent reducing properties, are hypothesized to impact this browning process. However, their influence and regulatory mechanism on the enzymatic browning of fresh-cut potatoes remain poorly understood. This study used the "Holland Seven" potato as the research material to explore the effects of a treatment with different TP concentrations (0.1 g L-1, 0.2 g L-1, and 0.3 g L-1) on the browning phenomenon and quality of fresh-cut potatoes during storage. The results showed that appropriate concentrations of TP treatment had a good preservation effect on the appearance and edible quality of fresh-cut potatoes. Furthermore, exogenous TP treatment reduced the content of enzymatic browning substrates (caffeic acid, p-coumaric acid, and ferulic acid) by regulating phenylpropanoid metabolism. Meanwhile, TP treatment augmented the activities of antioxidative enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase), maintained higher levels of ascorbic acid (Vc), and reduced glutathione (GSH). Consequently, the TP treatment could inhibit enzymatic browning by regulating reactive oxygen species (ROS) metabolism and the Vc-GSH cycle in fresh-cut potatoes.

4.
Biomed Pharmacother ; 169: 115905, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38000356

ABSTRACT

The therapeutic benefits of available FLT3 inhibitors for AML are limited by drug resistance, which is related to mutations, as well toxicity caused by off-target effects. In this study, we introduce a new small molecule FLT3 inhibitor called danatinib, which was designed to overcome the limitations of currently approved agents. Danatinib demonstrated greater potency and selectivity, resulting in cytotoxic activity specific to FLT3-ITD and/or FLT3-TKD mutated models. It also showed a superior kinome inhibition profile compared to several currently approved FLT3 inhibitors. In diverse FLT3-TKD models, danatinib exhibited substantially improved activity at clinically relevant doses, outperforming approved FLT3 inhibitors. In vivo safety evaluations performed on the granulopoiesis of transgenic myeloperoxidase (MPO) zebrafish and mice models proved danatinib to have an acceptable safety profile. Danatinib holds promise as a new and improved FLT3 inhibitor for the treatment of AML, offering long-lasting remissions and improved overall survival rates.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Animals , Mice , Zebrafish , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mutation
5.
Stem Cell Res Ther ; 14(1): 45, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941658

ABSTRACT

BACKGROUND: Cholestatic liver fibrosis (CLF) is caused by inflammatory destruction of the intrahepatic bile duct and abnormal proliferation of the small bile duct after cholestasis. Activation of the Notch signaling pathway is required for hepatic stem cells to differentiate into cholangiocytes during the pathogenesis of CLF. Our previous research found that the expression of the Numb protein, a negative regulator of Notch signaling, was significantly reduced in the livers of patients with primary biliary cholangitis and CLF rats. However, the relationship between the Numb gene and CLF is largely unclear. In this study, we investigated the role of the Numb gene in the treatment of bile duct ligation (BDL)-induced CLF. METHODS: In vivo, bone marrow-derived mesenchymal stem cells (BM-MSCs) with Numb gene overexpression or knockdown obtained using lentivirus transfection were transplanted into the livers of rats with BDL-induced CLF. The effects of the Numb gene on stem cell differentiation and CLF were evaluated by performing histology, tests of liver function, and measurements of liver hydroxyproline, cytokine gene and protein levels. In vitro, the Numb gene was overexpressed or knocked down in the WB-F344 cell line by lentivirus transfection, Then, cells were subjected immunofluorescence staining and the detection of mRNA levels of related factors, which provided further evidence supporting the results from in vivo experiments. RESULTS: BM-MSCs overexpressing the Numb gene differentiated into hepatocytes, thereby inhibiting CLF progression. Conversely, BM-MSCs with Numb knockdown differentiated into biliary epithelial cells (BECs), thereby promoting the ductular reaction (DR) and the progression of CLF. In addition, we confirmed that knockdown of Numb in sodium butyrate-treated WB-F344 cells aggravated WB-F344 cell differentiation into BECs, while overexpression of Numb inhibited this process. CONCLUSIONS: The transplantation of BM-MSCs overexpressing Numb may be a useful new treatment strategy for CLF.


Subject(s)
Cholestasis , Mesenchymal Stem Cells , Rats , Animals , Rats, Inbred F344 , Liver Cirrhosis/genetics , Liver Cirrhosis/therapy , Cholestasis/genetics , Cholestasis/therapy , Cholestasis/complications , Liver/metabolism , Mesenchymal Stem Cells/pathology , Intracellular Signaling Peptides and Proteins/metabolism
6.
Drug Dev Res ; 84(2): 296-311, 2023 04.
Article in English | MEDLINE | ID: mdl-36644989

ABSTRACT

Small molecule covalent drugs have proved to be desirable therapies especially on drug resistance related to point mutations. Secondary mutations of FLT3 have become the main mechanism of FLT3 inhibitors resistance which further causes the failure of treatment. Herein, a series of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine covalent derivatives were synthesized and optimized to overcome the common secondary resistance mutations of FLT3. Among these derivatives, compound F15 displayed potent inhibition activities against FLT3 (IC50 = 123 nM) and FLT3-internal tandem duplication (ITD) by 80% and 26.06%, respectively, at the concentration of 1 µM. Besides, F15 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 253 nM) and MV4-11 (IC50 = 91 nM), as well as BaF3 cells with variety of secondary mutations. Furthermore, cellular mechanism assays indicated that F15 inhibited phosphorylation of FLT3 and its downstream signaling factors. Notably, F15 could be considered for further development as potential drug candidate to treat AML.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Amines/pharmacology , Leukemia, Myeloid, Acute/drug therapy , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/pharmacology , fms-Like Tyrosine Kinase 3/therapeutic use , Apoptosis , Cell Proliferation
7.
Int J Mol Sci ; 22(19)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34638695

ABSTRACT

Nuclear Factor-Y (NF-Y) transcription factors play vital roles in plant abiotic stress response. Here, the NF-Y family in Brassica napus, which is hyper-sensitive to nitrogen (N) deprivation, was comprehensively identified and systematically characterized. A total of 108 NF-Y family members were identified in B. napus and categorized into three subfamilies (38 NF-YA, 46 NF-YB and 24 NF-YC; part of the Arabidopsis NF-YC homologous genes had been lost during B. napus evolution). In addition, the expansion of the NF-Y family in B. napus was driven by whole-genome duplication and segmental duplication. Differed expression patterns of BnaNF-Ys were observed in response to multiple nutrient starvations. Thirty-four genes were regulated only in one nutrient deficient condition. Moreover, more BnaNF-YA genes were differentially expressed under nutrient limited environments compared to the BnaNF-YB and BnaNF-YC subfamilies. Sixteen hub genes responded diversely to N deprivation in five rapeseed tissues. In summary, our results laid a theoretical foundation for the follow-up functional study of the key NF-Y genes in B. napus in regulating nutrient homeostasis, especially N.


Subject(s)
Brassica napus , CCAAT-Binding Factor , Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Brassica napus/genetics , Brassica napus/metabolism , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
8.
J Mater Chem B ; 8(40): 9343-9350, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32969462

ABSTRACT

Peroxynitrite (ONOO-) is a potent bio-oxidant involved in many physiological and pathological processes; however, most of the pathological effects associated with ONOO-in vivo are still ambiguous. Herein, we designed and synthesized two near-infrared ratiometric fluorescent probes, Ratio-A and Ratio-B, for the detection and biological evaluation of ONOO-. The recognition unit diene in the probes could be specifically cleaved by ONOO- with a 94-fold enhancement in the ratiometric fluorescence signal. By imaging ONOO- in immune stimulated cells and acute inflammation mice model using Ratio-A, we investigated the fluctuations of ONOO- levels in a rheumatoid arthritis (RA) model of mice. Ratio-A could be applied for the effective imaging of RA and could rapidly evaluate the response of the RA treatment with methotrexate (MTX). Thus, Ratio-A can be considered as a promising tool for pathological diagnosis and the therapeutic assessment of a wide range of diseases including RA.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Fluorescent Dyes/chemistry , Peroxynitrous Acid/analysis , Rhodamines/chemistry , Animals , Arthritis, Rheumatoid/metabolism , Fluorescent Dyes/chemical synthesis , Inflammation/diagnostic imaging , Inflammation/metabolism , Limit of Detection , Male , Mice , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Peroxynitrous Acid/metabolism , RAW 264.7 Cells , Rhodamines/chemical synthesis
9.
Article in English | MEDLINE | ID: mdl-30524484

ABSTRACT

Microglial cells, upon hyperactivation, produce proinflammatory cytokines and other oxidative stress mediators causing neuroinflammation, which is associated with the progress of many neurodegenerative diseases. Suppressing the microglial activation has hence been used as an approach for treating such diseases. In this study, the antineuroinflammatory effect of simvastatin was examined in lipopolysaccharide (LPS)-activated rat C6 glioma cells. The cell proliferation and cytotoxic effect of LPS and simvastatin on C6 glioma cells was evaluated by (MTT) assay. Neuroinflammation was induced in differentiated cell lines by treatment with 3.125 µg/mL of LPS for 12 h. Upon induction, the cell lines were treated with different concentrations (3.125, 6.25, 12.5, 25, 50, 100 µM) of simvastatin and incubated in a humidified CO2 incubator for 24 to 48 h. The optimum concentrations of LPS and simvastatin were found to be 3.125 µg/mL and 25 µM, respectively, with a cell viability of more than 90% at 24 h postincubation. Furthermore, proinflammatory marker expression was analyzed by flow cytometry and showed a decrease in interferon-γ, interleukin 6, nuclear factor-κB p65, and tumor necrosis factor-α in simvastatin-treated and LPS-induced neuroinflammatory cells, and the mean fluorescent values were found to be 21.75 ± 0.76, 20.9 ± 1.90, 19.72 ± 1.29, and 16.82 ± 0.97, respectively, as compared to the untreated cells. Thus, we show that simvastatin has the potential to regulate the anti-inflammatory response in microglial cells upon LPS challenge. Hence, simvastatin can be employed as a potent anti-inflammatory drug against neuroinflammatory diseases and neurodegenerative disorders.

10.
Int J Mol Sci ; 19(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337904

ABSTRACT

Air pollution is a serious environmental health problem closely related to the occurrence of central nervous system diseases. Exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) during pregnancy may affect the growth and development of infants. The present study was to investigate the effects of maternal exposure to PM2.5 during pregnancy on brain development in mice offspring. Pregnant mice were randomly divided into experimental groups of low-, medium-, or high-dosages of PM2.5, a mock-treated group which was treated with the same amount of phosphate buffer solution (PBS), and acontrol group which was untreated. The ethology of offspring mice on postnatal days 1, 7, 14, 21, and 30, along with neuronal development and apoptosis in the cerebral cortex were investigated. Compared with the control, neuronal mitochondrial cristae fracture, changed autophagy characteristics, significantly increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cell rate, and mRNA levels of apoptosis-related caspase-8 and caspase-9 were found in cerebral cortex of mice offspring from the treatment groups, with mRNA levels of Bcl-2 and ratio of Bcl-2 to Bax decreased. Treatment groups also demonstrated enhanced protein expressions of apoptosis-related cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, along with declined proliferating cell nuclear antigen (PCNA), Bcl-2, and ratio of Bcl-2 to Bax. Open field experiments and tail suspension experiments showed that exposure to high dosage of PM2.5 resulted in decreased spontaneous activities but increased static accumulation time in mice offspring, indicating anxiety, depression, and social behavioral changes. Our results suggested that maternal exposure to PM2.5 during pregnancy might interfere with cerebral cortex development in mice offspring by affecting cell apoptosis.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/pathology , Maternal Exposure/adverse effects , Particle Size , Particulate Matter/adverse effects , Prenatal Exposure Delayed Effects/pathology , Animals , Animals, Newborn , Apoptosis/genetics , Behavior, Animal , Caspases/genetics , Caspases/metabolism , Female , Gene Expression Regulation, Developmental , Hindlimb Suspension , Mice , Neurons/pathology , Neurons/ultrastructure , Pregnancy , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synapses/metabolism , Synapses/ultrastructure , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
11.
Front Neurosci ; 12: 1000, 2018.
Article in English | MEDLINE | ID: mdl-30666183

ABSTRACT

Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1ß. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring.

12.
Medicine (Baltimore) ; 94(23): e739, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26061301

ABSTRACT

The aim of this study is to investigate the incidence of unplanned reoperations from all causes due to bleeding in neurosurgical patients. The medical records of patients who received neurosurgical procedures at our hospital were retrospectively reviewed and data of patients who received reoperations were extracted and summarized. A literature review was conducted of the Medline, Cochrane, EMBASE, and Google Scholar databases up to November 2013. The main outcome measure was the rate of unplanned reoperations due to bleeding. At our hospital, 68 patients with a mean age of 41.5 ±â€Š21.5 years (range, 7 months to 76 years) received an unplanned reoperation. More than 70% of the patients were older than 18 years, 64.7% were males, and 94.1% had cranial surgery. Almost 60% of the patients received >1 blood transfusion (58.8%) after the first surgery. Of the 68 patients, 35 (51.5%) received a second operation due to bleeding. Univariate logistic regression analysis only showed that an increasing time interval between the first and second surgery was associated with a decreased chance of the reoperation being performed due to bleeding (odds ratio [OR] = 0.843, 95% confidence interval [CI]: 0.720-0.987; P = .033). Of 229 studies identified, 5 retrospective reports with a total of 1375 patients were included in the analysis. The rate of reoperations for bleeding in the 5 studies ranged from 4.2% to 31.5%. Employing measures to reduce postoperative bleeding may help reduce the rate of unplanned neurosurgical reoperations.


Subject(s)
Neurosurgical Procedures/adverse effects , Postoperative Hemorrhage/etiology , Postoperative Hemorrhage/surgery , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Patient Care Planning , Reoperation , Retrospective Studies , Young Adult
13.
Cell Signal ; 25(12): 2863-70, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24036210

ABSTRACT

Homer1 protein is an important scaffold protein at postsynaptic density and has been demonstrated to play a central role in calcium signaling in the central nervous system. The aim of this study was to investigate the effects of Homer1 knockdown on MPP(+) induced neuronal injury in cultured dopamine (DA) neurons. We found that down-regulating Homer1 expression with specific small interfering RNA (siRNA) significantly suppressed LDH release, reduced Propidium iodide (PI) or Hoechst staining, increased the number of tyrosine hydroxylase (TH) positive cells and DA uptake, and attenuated apoptotic and necrotic cell death after MPP(+) injury. Homer1 knockdown decreased intracellular reactive oxygen species (ROS) generation through inhibition of intracellular calcium overload, but did not affect the endogenous antioxidant enzyme activities. Calcium imaging was used to examine the changes of intracellular Ca(2+) concentration ([Ca(2+)]cyt) and Ca(2+) in endoplasmic reticulum (ER) ([Ca(2+)]ER), and the results showed that Homer1 siRNA transfection attenuated ER Ca(2+) release up to 120min after MPP(+) injury. Furthermore, decrease of [Ca(2+)]cyt induced by Homer1 knockdown in MPP(+) treated neurons was further enhanced by NMDA receptor antagonists MK-801 and AP-5, but not canonical transient receptor potential (TRPC) channel antagonist SKF-96365. l-type calcium antagonist isradipine but not nimodipine further inhibited intracellular calcium overload after MPP(+) insult in Homer1 down-regulated neurons. These results suggest that Homer1 knockdown has protective effects against neuronal injury in in vitro PD model by reducing calcium overload mediated ROS generation, and this protection may be dependent at least in part on the regulatory effects on the function of calcium channels in both plasma membrane and ER.


Subject(s)
Calcium/metabolism , Carrier Proteins/genetics , Neurons/metabolism , Neurons/pathology , Parkinson Disease, Secondary/metabolism , RNA Interference , 1-Methyl-4-phenylpyridinium , Animals , Calcium Channels/metabolism , Calcium Signaling , Carrier Proteins/metabolism , Cell Death , Cells, Cultured , Dopamine/metabolism , Homeostasis , Homer Scaffolding Proteins , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/genetics , Parkinson Disease, Secondary/pathology , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
14.
Cell Mol Neurobiol ; 33(7): 921-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23842993

ABSTRACT

Salvianolic acid B (SalB), the main water-soluble bioactive compounds isolated from the traditional Chinese medical herb Danshen, has been shown to exert anti-cancer effect in several cancer cell lines. The aim of our study was to investigate the potential anti-cancer effect of SalB in human glioma U87 cells. We found that treatment with SalB significantly decreased cell viability of U87 cells in a dose- and time-dependent manner. SalB also enhanced the intracellular ROS generation and induced apoptotic cell death in U87 cells. Western blot analysis suggested that SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment. The anti-tumor activity of SalB in vivo was also demonstrated in U87 xenograft glioma model. All of these findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anticancer agent for glioma prevention and treatment.


Subject(s)
Apoptosis/drug effects , Benzofurans/pharmacology , Glioma/pathology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzofurans/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Glioma/drug therapy , Glioma/enzymology , Humans , Mice , Tumor Suppressor Protein p53/metabolism
15.
Sci Rep ; 2: 986, 2012.
Article in English | MEDLINE | ID: mdl-23248749

ABSTRACT

Herein, we report the feasibility to enhance the capacity and stability of CoMn(2)O(4) anode materials by fabricating hierarchical mesoporous structure. The open space between neighboring nanosheets allows for easy diffusion of the electrolyte. The hierarchical microspheres assembled with nanosheets can ensure that every nanosheet participates in the electrochemical reaction, because every nanosheet is contacted with the electrolyte solution. The hierarchical structure and well interconnected pores on the surface of nanosheets will enhance the CoMn(2)O(4)/electrolyte contact area, shorten the Li(+) ion diffusion length in the nanosheets, and accommodate the strain induced by the volume change during the electrochemical reaction. The last, hierarchical architecture with spherical morphology possesses relatively low surface energy, which results in less extent of self-aggregation during charge/discharge process. As a result, CoMn(2)O(4) hierarchical microspheres can achieve a good cycle ability and high rate capability.


Subject(s)
Cobalt/chemistry , Electric Power Supplies , Electrodes , Lithium/chemistry , Manganese Compounds/chemistry , Membranes, Artificial , Nanostructures/chemistry , Oxides/chemistry , Equipment Design , Equipment Failure Analysis , Ions , Microspheres , Nanostructures/ultrastructure , Porosity , Surface Properties
16.
Chemistry ; 18(47): 15049-56, 2012 Nov 19.
Article in English | MEDLINE | ID: mdl-23032561

ABSTRACT

A new facile strategy has been designed to fabricate spinel Mn(x)Co(3-x)O(4) porous nanocubes, which involves a morphology-conserved and pyrolysis-induced transformation of Prussian Blue Analogue Mn(3)[Co(CN)(6)](2)⋅nH(2)O perfect nanocubes. Owing to the release of CO(2) and N(x)O(y) in the process of interdiffusion, this strategy can overcome to a large extent the disadvantage of the traditional ceramic route for synthesis of spinels, and Mn(x)Co(3-x)O(4) with foamlike porous nanostructure is effectively obtained. Importantly, when evaluated as an electrode material for lithium-ion batteries, the foamlike Mn(x)Co(3-x)O(4) porous nanocubes display high specific discharge capacity and excellent rate capability. The improved electrochemical performance is attributed to the beneficial features of the particular foamlike porous nanostructure and large surface area, which reduce the diffusion length for Li(+) ions and enhance the structural integrity with sufficient void space for buffering the volume variation during the Li(+) insertion/extraction.


Subject(s)
Cobalt/chemistry , Electric Power Supplies , Lithium/chemistry , Manganese/chemistry , Nanostructures/chemistry , Oxygen/chemistry , Electrochemical Techniques , Electrodes , Particle Size , Porosity , Surface Properties , Water/chemistry
17.
Chemistry ; 18(29): 8971-7, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22707431

ABSTRACT

Herein we report a novel facile strategy for the fabrication of Co(3)O(4) porous nanocages based on the Kirkendall effect, which involves the thermal decomposition of Prussian blue analogue (PBA) Co(3)[Co(CN)(6)](2) truncated nanocubes at 400 °C. Owing to the volume loss and release of internally generated CO(2) and N(x) O(y) in the process of interdiffusion, Co(3)O(4) nanocages with porous shells and containing nanoparticles were finally obtained. When evaluated as electrode materials for lithium-ion batteries, the as-prepared Co(3)O(4) porous nanocages displayed superior battery performance. Most importantly, capacities of up to 1465 mA h g(-1) are attained after 50 cycles at a current density of 300 mA g(-1). Moreover, this simple synthetic strategy is potentially competitive for scaling-up industrial production.

SELECTION OF CITATIONS
SEARCH DETAIL
...