Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.438
Filter
1.
Article in English | MEDLINE | ID: mdl-38822723

ABSTRACT

OBJECTIVE: Previous studies have indicated that there is an association between cervical cerclage and type of suture material. However, it is still unclear which suture material can provide the greatest benefit to patients who have undergone cerclage. This study investigated the effect of two different suture materials (Mersilene tape vs braided suture) used for transvaginal cervical cerclage placement on maternal outcomes of women with cervical insufficiency. METHODS: In this retrospective case-control study, 170 women who underwent history-, ultrasound-, or physical examination-indicated transvaginal cervical cerclage were categorized according to suture materials used for cerclage: a total of 96 received Mersilene tape and 74 received braided suture. Study participants received a transvaginal cervical cerclage before 28 weeks and were followed up until delivery to assess pregnancy and neonatal outcomes. The primary outcome was gestational age at delivery. Secondary outcomes included preterm premature rupture of membranes (PPROM), premature rupture of membranes (PROM), chorioamnionitis, neonatal survival rate, and neonatal morbidity. RESULTS: Out of 170 eligible women, 74 (43.5%) received braided suture while 96 (56.5%) received Mersilene tape. Baseline characteristics were similar between the two groups. The group that received braided suture had a lower incidence of gestational age at delivery <37 weeks (29.2% vs 54.2%, P = 0.046), PPROM (9.5% vs 21.9%, P = 0.029) and PROM (17.6% vs 32.3%, P = 0.028) compared to the group that received Mersilene tape. However, there were no significant differences between the two groups in average gestational age at delivery, the rate of gestational age at delivery <24, <28, <32, and < 34 weeks, chorioamnionitis, and neonatal survival rate, as well as neonatal morbidity. CONCLUSION: Compared to Mersilene tape, the utilization of braided suture has been significantly associated with a reduction in the incidence of gestational age at delivery <37 weeks, as well as a decreased risk of PPROM and PROM. However, the use of braided sutures did not result in discernible differences in the rates of chorioamnionitis or adverse neonatal outcomes.

2.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826376

ABSTRACT

SARS-CoV-2 variants derived from the immune evasive JN.1 are on the rise worldwide. Here, we investigated JN.1-derived subvariants SLip, FLiRT, and KP.2 for their ability to be neutralized by antibodies in bivalent-vaccinated human sera, XBB.1.5 monovalent-vaccinated hamster sera, sera from people infected during the BA.2.86/JN.1 wave, and class III monoclonal antibody (Mab) S309. We found that compared to parental JN.1, SLip and KP.2, and especially FLiRT, exhibit increased resistance to COVID-19 bivalent-vaccinated human sera and BA.2.86/JN.1-wave convalescent sera. Interestingly, antibodies in XBB.1.5 monovalent vaccinated hamster sera robustly neutralized FLiRT and KP.2 but had reduced efficiency for SLip. These JN.1 subvariants were resistant to neutralization by Mab S309. In addition, we investigated aspects of spike protein biology including infectivity, cell-cell fusion and processing, and found that these subvariants, especially SLip, had a decreased infectivity and membrane fusion relative to JN.1, correlating with decreased spike processing. Homology modeling revealed that L455S and F456L mutations in SLip reduced local hydrophobicity in the spike and hence its binding to ACE2. In contrast, the additional R346T mutation in FLiRT and KP.2 strengthened conformational support of the receptor-binding motif, thus counteracting the effects of L455S and F456L. These three mutations, alongside D339H, which is present in all JN.1 sublineages, alter the epitopes targeted by therapeutic Mabs, including class I and class III S309, explaining their reduced sensitivity to neutralization by sera and S309. Together, our findings provide insight into neutralization resistance of newly emerged JN.1 subvariants and suggest that future vaccine formulations should consider JN.1 spike as immunogen, although the current XBB.1.5 monovalent vaccine could still offer adequate protection.

3.
iScience ; 27(6): 109796, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832016

ABSTRACT

Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.

4.
World J Hepatol ; 16(4): 494-505, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38689744

ABSTRACT

The endoplasmic reticulum (ER) is connected to mitochondria through mitochondria-associated ER membranes (MAMs). MAMs provide a framework for crosstalk between the ER and mitochondria, playing a crucial role in regulating cellular calcium balance, lipid metabolism, and cell death. Dysregulation of MAMs is involved in the development of chronic liver disease (CLD). In CLD, changes in MAMs structure and function occur due to factors such as cellular stress, inflammation, and oxidative stress, leading to abnormal interactions between mitochondria and the ER, resulting in liver cell injury, fibrosis, and impaired liver function. Traditional Chinese medicine has shown some research progress in regulating MAMs signaling and treating CLD. This paper reviews the literature on the association between mitochondria and the ER, as well as the intervention of traditional Chinese medicine in regulating CLD.

5.
Transl Pediatr ; 13(4): 575-583, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38715673

ABSTRACT

Background: The use of extracorporeal membrane oxygenation (ECMO) technology has significantly decreased mortality rates associated with neonatal pulmonary hypertension and respiratory failure. Prone positioning ventilation (PPV) is a commonly used technique in critically ill infants, designed to improve thoracic pressure gradients, re-expand dorsal lung segments, and increase oxygenation in approximately 70-80% of patients suffering from acute respiratory distress syndrome. This study aimed to evaluate the effects of PPV on pulmonary function in neonates undergoing venous-arterial extracorporeal membrane oxygenation (VA-ECMO). Methods: We conducted a retrospective analysis of clinical data from 17 neonates who received ECMO support in our institution, divided into two groups based on ventilation strategy: ECMO with PPV (ECMO-PPV, n=8) and ECMO with supine positioning ventilation (ECMO-SPV, n=9). Parameters such as the P/F ratio [arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (FiO2)], oxygenation index (OI), respiratory system compliance (Crs), and airway resistance (RAW) were collected and analyzed at baseline, and at 1, 2, and 3 days post-ECMO initiation. In the ECMO-PPV group, these parameters were also assessed 3 days pre-treatment and 2 hours post-treatment initiation. Results: Initial comparisons between ECMO-PPV and ECMO-SPV groups showed no significant difference in PaO2/FiO2, OI, Crs, or RAW. Throughout the ECMO treatment, both groups demonstrated gradual improvements in PaO2/FiO2 and Crs, and reductions in OI and RAW. Notably, by day 3, the ECMO-PPV group exhibited significant improvements in Crs and RAW compared to the ECMO-SPV group (P<0.05). Specifically, in the ECMO-PPV group, Crs significantly increased and RAW decreased after 2 hours of initiating PPV, with these changes becoming statistically significant by day 3 (Crs P=0.03, RAW P=0.03). No severe PPV-related complications were noted. Conclusions: PPV during neonatal ECMO may improve respiratory compliance and reduce RAW, potentially aiding lung recovery. Our findings suggest PPV as a viable strategy for neonates under ECMO support.

6.
Front Aging Neurosci ; 16: 1369014, 2024.
Article in English | MEDLINE | ID: mdl-38711597

ABSTRACT

Backgrounds: Numerous lines of evidence support the intricate interplay between Parkinson's disease (PD) and the PINK1-dependent mitophagy process. This study aimed to evaluate differences in plasma PINK1 levels among idiopathic PD, PD syndromes (PDs), and healthy controls. Methods: A total of 354 participants were included, consisting of 197 PD patients, 50 PDs patients, and 107 healthy controls were divided into two cohorts, namely the modeling cohort (cohort 1) and the validated cohort (cohort 2). An enzyme-linked immunosorbent assay (ELISA)-based analysis was performed on PINK1 and α-synuclein oligomer (Asy-no). The utilization of the area under the curve (AUC) within the receiver-operating characteristic (ROC) curves served as a robust and comprehensive approach to evaluate and quantify the predictive efficacy of plasma biomarkers alone, as well as combined models, in distinguishing PD patients from controls. Results: PINK1 and Asy-no were elevated in the plasma of PD and PDs patients compared to healthy controls. The AUCs of PINK1 (0.771) and Asy-no (0.787) were supposed to be potentially eligible plasma biomarkers differentiating PD from controls but could not differentiate PD from PDs. Notably, the PINK + Asy-no + Clinical RBD model showed the highest performance in the modeling cohort and was comparable with the PINK1 + Clinical RBD in the validation cohort. Moreover, there is no significant correlation between PINK1 and UPDRS, MMSE, HAMD, HAMA, RBDQ-HK, and ADL scores. Conclusion: These findings suggest that elevated PINK1 in plasma holds the potential to serve as a non-invasive tool for distinguishing PD patients from controls. Moreover, the outcomes of our investigation lend support to the plausibility of implementing a feasible blood test in future clinical translation.

7.
Heliyon ; 10(9): e30302, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711661

ABSTRACT

In this paper, the limb of a goat is chosen as the research object, and according to mammalian anatomy, a bionic model called the quasi inverted pendulum with "J" curve spring (QIPJCS) model with nonlinear stiffness is built, and the equations of motion are derived. Based on these equations, the advantages of the QIPJCS model are illustrated from the aspect of the stable motion region by the SFA (step-to-fall analysis) numerical simulation method. These results are compared with the traditional SLIP model. Furthermore, the ARM (Apex-Return-Map) of this model is built, and the fixed points are analyzed. Finally, according to the locomotion law of goats running with gallop gaits and the analysis of the dead-point support effect, the dynamic motion mechanism of goat limbs is elucidated, and the equivalent mechanism model is built. Based on the mechanism, the dynamic mechanical analysis indicates that the joint driving torque can be minimized to conserve energy by optimizing the landing angle. The running mechanism research of quadruped mammals, which is based on the novel bionic stiffness model, provides theoretical support for the design of high-performance mechanical legs and the motion control of bionic robots.

8.
BMC Biol ; 22(1): 104, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702712

ABSTRACT

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Gonadotropin-Releasing Hormone , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/genetics , Animals , Gonadotropins/metabolism , Mice , RNA, Messenger/metabolism , RNA, Messenger/genetics , RNA Methylation
9.
Chemistry ; : e202401426, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38757380

ABSTRACT

The fabrication of supramolecular light-harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non-covalent self-assembly of a sequential LHS by pillar[5]arene-based host-guest interaction in water and its applications in white light-emitting diode (LED) device and latent fingerprint imaging. The host-guest complex WP5⸧G self-assembles into nanoparticles in water and shows enhanced aggregation-induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white-light emission when the molar ratio of WP5⸧G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white-light emission. In addition, the sequential LHS exhibit color-tunable fluorescence including red emission, which have been successfully applied to high-resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host-guest interaction and explored its multi-functional applications in white-light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.

10.
Technol Health Care ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38759071

ABSTRACT

BACKGROUND: Shoes upper has been shown to affect the shoe microclimate (temperature and humidity). However, the existing data on the correlation between the microclimate inside footwear and the body's physical factors is still quite limited. OBJECTIVE: This study examined whether shoes air permeability would influence foot microclimate and spatial characteristics of lower limb and body. METHODS: Twelve recreational male habitual runners were instructed to finish an 80 min experimental protocol, wearing two running shoes with different air permeability. Participants wearing CLOSED upper structure shoe exhibited higher in-shoe temperature and relative humidity. RESULTS: Although there was no significant difference, shank temperature and metabolism in OPEN upper structure shoes were lower. CONCLUSIONS: This indicates that the air permeability of shoes can modify the microclimate of the feet, potentially affecting the lower limb temperature. This study provides relevant information for the design and evaluation of footwear.

11.
PLoS One ; 19(5): e0302753, 2024.
Article in English | MEDLINE | ID: mdl-38739634

ABSTRACT

Leprosy has a high rate of cripplehood and lacks available early effective diagnosis methods for prevention and treatment, thus novel effective molecule markers are urgently required. In this study, we conducted bioinformatics analysis with leprosy and normal samples acquired from the GEO database(GSE84893, GSE74481, GSE17763, GSE16844 and GSE443). Through WGCNA analysis, 85 hub genes were screened(GS > 0.7 and MM > 0.8). Through DEG analysis, 82 up-regulated and 3 down-regulated genes were screened(|Log2FC| > 3 and FDR < 0.05). Then 49 intersection genes were considered as crucial and subjected to GO annotation, KEGG pathway and PPI analysis to determine the biological significance in the pathogenesis of leprosy. Finally, we identified a gene-pathway network, suggesting ITK, CD48, IL2RG, CCR5, FGR, JAK3, STAT1, LCK, PTPRC, CXCR4 can be used as biomarkers and these genes are active in 6 immune system pathways, including Chemokine signaling pathway, Th1 and Th2 cell differentiation, Th17 cell differentiation, T cell receptor signaling pathway, Natural killer cell mediated cytotoxicity and Leukocyte transendothelial migration. We identified 10 crucial gene markers and related important pathways that acted as essential components in the etiology of leprosy. Our study provides potential targets for diagnostic biomarkers and therapy of leprosy.


Subject(s)
Biomarkers , Gene Regulatory Networks , Leprosy , Leprosy/genetics , Leprosy/microbiology , Humans , Biomarkers/metabolism , Computational Biology/methods , Databases, Genetic , Gene Expression Profiling , Protein Interaction Maps/genetics , Signal Transduction
12.
Cancer Med ; 13(10): e7233, 2024 May.
Article in English | MEDLINE | ID: mdl-38752474

ABSTRACT

BACKGROUND: Over the past decade, immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, ICIs inevitably may cause a spectrum of immune-related adverse events, among which cardiovascular toxicity, particularly myocarditis, while infrequent, has garnered increasing attention due to its high fatality rate. METHODS: We conducted a multicenter retrospective study to characterize ICI-associated cardiovascular adverse events. Logistic regression was performed to explore the risk factors for the development of myocarditis and severe myocarditis. Receiver operating characteristic curves were conducted to assess the diagnostic abilities of cardiac biomarkers to distinguish different cardiovascular toxicities, and the performance and calibration were evaluated using Hosmer-Lemeshow test. RESULTS: Forty-four patients were identified, including thirty-five myocarditis, five heart failure, three arrhythmias, and one myocardial infarction. Compared with other patients, myocarditis patients had higher cardiac troponin-I (cTnI) levels (p < 0.001), higher creatine kinase levels (p = 0.003), higher creatine kinase isoenzyme-MB (CK-MB) levels (p = 0.013), and shorter time to the incidence of adverse cardiovascular events (p = 0.022) after ICI treatment. Twenty-one patients (60%) were classified as severe myocarditis, and they presented higher cardiac troponin I (cTnI) levels (p = 0.013), higher N-terminal pro-B-type natriuretic peptide levels (p = 0.031), higher creatine kinase levels (p = 0.018), higher CK-MB levels (p = 0.026), and higher neutrophil to lymphocyte ratio (NLR) levels (p = 0.016) compared to non-severe myocarditis patients after ICI treatment. Multivariate logistic regression showed that CK-MB (adjusted odds ratio [OR]: 1.775, 95% confidence interval [CI]: 1.055-2.984, p = 0.031) was the independent risk factor of the development of ICI-associated myocarditis, and cTnI (adjusted OR: 1.021, 95% CI: 1.002-1.039, p = 0.03) and NLR (adjusted OR: 1.890, 95% CI: 1.026-3.483, p = 0.041) were the independent risk factors of ICI-associated severe myocarditis. The receiver operating characteristic curve showed an area under curve of 0.785 (95% CI: 0.642 to 0.928, p = 0.013) for CK-MB, 0.765 (95% CI: 0.601 to 0.929, p = 0.013) for cTnI, and 0.773 for NLR (95% CI: 0.597 to 0.948, p = 0.016). CONCLUSIONS: Elevated CK-MB after ICI treatment is the independent risk factor for the incidence of ICI-associated myocarditis, and elevated cTnI and NLR after ICI treatment are the independent risk factors for the development of ICI-associated severe myocarditis. CK-MB, cTnI, and NLR demonstrated a promising predictive utility for the identification of ICI-associated myocarditis and severe myocarditis.


Subject(s)
Immune Checkpoint Inhibitors , Myocarditis , Humans , Male , Retrospective Studies , Female , Immune Checkpoint Inhibitors/adverse effects , Myocarditis/chemically induced , Myocarditis/epidemiology , Myocarditis/diagnosis , Middle Aged , Aged , Risk Factors , Biomarkers/blood , Neoplasms/drug therapy , Troponin I/blood , ROC Curve , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Creatine Kinase, MB Form/blood , Natriuretic Peptide, Brain/blood , Heart Failure/chemically induced
14.
Diabetes ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771941

ABSTRACT

An important factor in the development of Type 1 diabetes (T1D) is the deficiency of inhibitory immune checkpoint ligands, specifically programmed cell death ligand 1 (PD-L1) and Galectin-9 (Gal-9), in ß-cells. Hence, modulation of the pancreas infiltrated T lymphocytes by exogenous PD-L1 or Gal-9 is an ideal approach for treating the new-onset T1D. Herein, we genetic engineered the macrophage cells to generate artificial extracellular vesicles (aEVs) overexpressing PD-L1 and Gal-9, which could restrict the islets autoreactive T lymphocytes and protect ß-cells from destruction. Intriguingly, overexpressing Gal-9 spurred macrophage polarization to M2 phenotype with immune suppressive attribute. Alternatively, both of PD-L1 and Gal-9 presenting aEVs (PD-L1-Gal-9 aEVs) favorably adhere to T cells via the interaction of programmed cell death protein 1 (PD-1)/PD-L1 or T cell immunoglobulin mucin 3 (TIM-3)/Gal-9. Moreover, PD-L1-Gal-9 aEVs prominently promoted effector T cell apoptosis and splenic regulatory T cells (Treg) cells differentiation in vitro. Virtually, PD-L1-Gal-9 aEVs efficaciously reversed the new-onset hyperglycemia in the NOD mice, prevented T1D progress, and declined the proportion and activation of CD4+ and CD8+ T cells infiltrating the pancreas notably, which together contributed to preserving the residual ß-cells survival and mitigating the hyperglycemia.

15.
iScience ; 27(6): 109850, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38779481

ABSTRACT

Milk fat is an important indicator for evaluating the quality of cow's milk. In this study, we used bovine mammary epithelial cells (BMECs) to investigate the role and molecular mechanism of KLF4 in the regulation of milk fat synthesis. The results showed that KLF4 was more highly expressed in mammary tissues of high-fat cows compared with low-fat cows. KLF4 positively regulated the expression of genes related to milk fat synthesis in BMECs, increasing intracellular triglycerides content, and KLF4 promoted milk fat synthesis by activating the PI3K-AKT-mTOR signaling pathway. Furthermore, the results of animal experiments also confirmed that knockdown of KLF4 inhibited milk fat synthesis. In addition, yeast one-hybrid assays and dual-luciferase reporter gene assays confirmed that KLF4 directly targets and binds to the fatty acid synthase (FASN) promoter region to promote FASN transcription. These results demonstrate that KLF4 is a key transcription factor for milk fat synthesis in BMECs.

16.
Asia Pac J Ophthalmol (Phila) ; : 100067, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750958

ABSTRACT

OBJECTIVE: To identify the risk factors for the development of diabetic retinopathy (DR), diabetic macular edema (DME), and sight-threatening DR (STDR) based on a city-wide diabetes screening program. RESEARCH DESIGN AND METHODS: Diabetic patients were prospectively recruited between June 2016 and December 2022. All patients underwent dilated fundus photography centered on the disc and macula or macular spectral domain optical coherence tomography (SD-OCT) scan. Complete medical history was documented. Systematic examination, blood analysis, and urinalysis were performed. Multivariate logistic regression analysis adjusting for age and sex was conducted. RESULTS: Out of 7274 diabetic patients, 6840 had gradable images, among which 3054 (42.0%) were graded as DR, 1153 (15.9%) as DME, and 1500 (20.6%) as STDR. The factors associated with DR, DME, and STDR included younger age (odds ratio [OR]: 0.96, 0.97, and 0.96 respectively), lower BMI (OR: 0.97, 0.95, and 0.95 respectively), longer duration of diabetes (OR: 1.07, 1.03, and 1.05 respectively) and positive of urinary albumin (OR: 2.22, 2.56, and 2.88 respectively). Other associated factors included elevated blood urea nitrogen (OR: 1.22, 1.28, and 1.27 respectively), higher LDL-cholesterol, lower blood hemoglobin (OR: 0.98, 0.98, and 0.98), insulin intake, presence of diabetic foot pathologies and diabetic peripheral neuropathy. We also identified novel risk factors, including high serum potassium (OR: 1.37, 1.46, and 1.55 respectively), high-serum sodium (OR: 1.02, 1.02, and 1.04 respectively). Better family income was a protective factor for DR, DME, and STDR. Alcohol consumption once a week was also identified as a protective factor for DR. CONCLUSIONS: Similar risk factors for DR, DME, and STDR were found in this study. Our data also indicates high serum sodium, high serum potassium, low blood hemoglobin, and level of family income as novel associated factors for DR, DME, and STDR, which can help with DR monitoring and management.

17.
Cell Rep ; 43(6): 114248, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38795350

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) undergoes liquid-liquid phase separation (LLPS) to trigger downstream signaling upon double-stranded DNA (dsDNA) stimulation, and the condensed cGAS colocalizes with stress granules (SGs). However, the molecular mechanism underlying the modulation of cGAS activation by SGs remains elusive. In this study, we show that USP8 is localized to SGs upon dsDNA stimulation and potentiates cGAS-stimulator of interferon genes (STING) signaling. A USP8 inhibitor ameliorates pathological inflammation in Trex1-/- mice. Systemic lupus erythematosus (SLE) databases indicate a positive correlation between USP8 expression and SLE. Mechanistic study shows that the SG protein DDX3X promotes cGAS phase separation and activation in a manner dependent on its intrinsic LLPS. USP8 cleaves K27-linked ubiquitin chains from the intrinsically disordered region (IDR) of DDX3X to enhance its condensation. In conclusion, we demonstrate that USP8 catalyzes the deubiquitination of DDX3X to facilitate cGAS condensation and activation and that inhibiting USP8 is a promising strategy for alleviating cGAS-mediated autoimmune diseases.

18.
Ultrason Sonochem ; 106: 106883, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703594

ABSTRACT

Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.


Subject(s)
Antioxidants , Chemical Phenomena , Ficus , Pectins , Ultrasonic Waves , Pectins/chemistry , Pectins/isolation & purification , Ficus/chemistry , Antioxidants/chemistry , Temperature , Particle Size , Hydrogen-Ion Concentration
19.
Zhongguo Zhen Jiu ; 44(5): 495-502, 2024 May 12.
Article in Chinese | MEDLINE | ID: mdl-38764098

ABSTRACT

OBJECTIVE: To establish and validate a clinical prediction model of acupuncture and moxibustion for Bell's palsy so as to provide a tool for predicting the effect of acupuncture and moxibustion on Bell's palsy. METHODS: A total of 269 patients with Bell's palsy were collected from department of acupuncture, moxibustion and tuina, Shengli Oilfield Central Hospital, neurology department, Shenxian County Central Hospital and department of rehabilitation medicine, Dongying Municipal Hospital of TCM from June 2018 to June 2023. All of these cases were treated with acupuncture and moxibustion. Of them, 182 cases, from department of acupuncture, moxibustion and tuina, Shengli Oilfield Central Hospital and neurology department, Shenxian County Central Hospital, were randomized into a training group (128 cases) and an internal validation group (54 cases); 87 cases from department of rehabilitation medicine, Dongying Municipal Hospital of TCM were assigned to an external validation group. The clinical data of all of the cases were extracted from the electronic medical record information platform. Using SPSS25.0 and R4.2.3, through univariate and multivariate Logistic regression analysis, the independent factors influencing the effects of acupuncture and moxibustion on Bell's palsy were identified. By means of internal and external validations, the receiver operating characteristic curve (ROC), the goodness-of-fit curve (GFC) and the decision curve analysis (DCA) were plotted. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of the model were calculated; and its comprehensive performance was evaluated. RESULTS: The results of the multivariate Logistic regression analysis showed that the independent factors for the unsatisfactory effect on Bell's palsy were advanced age, severe symptoms before treatment, no use of steroids within 72 h of onset, and lack of acupuncture-moxibustion therapy during the acute phase or single acupuncture-moxibustion protocol (P<0.05, P<0.01). Based on these factors, nomogram model and online columnar plot prediction tool (https://bmuchen.shinyapps.io/dynnomapp/) were established. The area under the ROC curve of the model was 0.921 (95% CI: 0.877, 0.966), 0.876 (95% CI: 0.787, 0.966), and 0.846 (95% CI: 0.766, 0.926) in the training group, the internal validation group, and the external validation group, respectively, indicating good predictive value. The model showed a satisfactory calibration curve alignment. The decision threshold in the range of 0 to 0.8 provided clinical benefits for participants. The model exhibited the sensitivity from 65.9% to 88.0%, the specificity ranging from 77.3% to 90.7%, the accuracy from 77.8% to 85.9%, the positive predictive value from 83.3% to 90.1%, and the negative predictive value from 70.8% to 78.7%. The comprehensive evaluation indicated a satisfactory clinical application value of the model. CONCLUSION: The clinical prediction model of acupuncture and moxibustion for Bell's palsy is valuable in its practice and promotion to a certain extent. The predicted results are conductive to clinicians' judgement of the effect of acupuncture and moxibustion for this disease and making effective and high-quality clinical decisions, as well as formulating the optimal therapeutic regimen.


Subject(s)
Acupuncture Therapy , Bell Palsy , Moxibustion , Humans , Male , Female , Bell Palsy/therapy , Middle Aged , Adult , Young Adult , Aged , Adolescent , Treatment Outcome , ROC Curve
20.
Zool Res ; 45(3): 586-600, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766743

ABSTRACT

The placenta plays a crucial role in successful mammalian reproduction. Ruminant animals possess a semi-invasive placenta characterized by a highly vascularized structure formed by maternal endometrial caruncles and fetal placental cotyledons, essential for full-term fetal development. The cow placenta harbors at least two trophoblast cell populations: uninucleate (UNC) and binucleate (BNC) cells. However, the limited capacity to elucidate the transcriptomic dynamics of the placental natural environment has resulted in a poor understanding of both the molecular and cellular interactions between trophoblast cells and niches, and the molecular mechanisms governing trophoblast differentiation and functionalization. To fill this knowledge gap, we employed Stereo-seq to map spatial gene expression patterns at near single-cell resolution in the cow placenta at 90 and 130 days of gestation, attaining high-resolution, spatially resolved gene expression profiles. Based on clustering and cell marker gene expression analyses, key transcription factors, including YBX1 and NPAS2, were shown to regulate the heterogeneity of trophoblast cell subpopulations. Cell communication and trajectory analysis provided a framework for understanding cell-cell interactions and the differentiation of trophoblasts into BNCs in the placental microenvironment. Differential analysis of cell trajectories identified a set of genes involved in regulation of trophoblast differentiation. Additionally, spatial modules and co-variant genes that help shape specific tissue structures were identified. Together, these findings provide foundational insights into important biological pathways critical to the placental development and function in cows.


Subject(s)
Gene Expression Profiling , Placenta , Placentation , Transcriptome , Animals , Cattle/genetics , Female , Pregnancy , Placenta/metabolism , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...