Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(45): 68191-68201, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35538337

ABSTRACT

Cadmium (Cd) is a toxic heavy metal to plants and human health. Ascorbate (ASA)-glutathione (GSH) synthesis pathway plays key roles in Cd detoxification, while its molecular regulatory mechanism remains largely unknown, especially in wheat. Here, we found a WRKY transcription factor-TaWRKY74, and its function in wheat Cd stress is not clear in previous studies. The expression levels of TaWRKY74 were significantly induced by Cd stress. Compared to control, the activities of GST, GR, or APX were significantly increased by 1.55-, 1.43-, or 1.75-fold and 1.63-, 2.65-, or 2.30-fold in shoots and roots of transiently TaWRKY74-silenced wheat plants under Cd stress. Similarly, the contents of hydrogen peroxide (H2O2), malondialdehyde (MDA), GSH, or Cd were also significantly increased by 2.39- or 1.25-fold, 1.54- or 1.20-fold, and 1.34- or 5.94-fold in shoots or roots in transiently TaWRKY74-silenced wheat plants, while ASA content was decreased by 47.4 or 43.3% in shoots, 10.7 or 6.5% in roots in these silenced wheat plants, respectively. Moreover, the expression levels of GSH, GPX, GR, DHAR, MDHAR, and APX genes, which are involved in ASA-GSH synthesis, were separately induced by 2.42-, 2.16-, 3.28-, 2.08-, 1.92-, and 2.23-fold in shoots, or by 10.69-, 3.33-, 3.26-, 1.81-, 16.53-, and 3.57-fold in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants, respectively. However, the expression levels of TaNramp1, TaNramp5, TaHMA2, TaHMA3, TaLCT1, and TaIRT1 metal transporters genes were decreased by 21.2-76.3% (56.6%, 59.2%, 76.3%, 53.6%, 35.8%, and 21.2%) in roots of the BSMV-VIGS-TaWRKY74-inoculated wheat plants. Taken together, our results suggested that TaWRKY74 alleviated Cd toxicity in wheat by affecting the expression of ASA-GSH synthesis genes and suppressing the expression of Cd transporter genes, and further affecting Cd uptake and translocation in wheat plants.


Subject(s)
Cadmium , Triticum , Antioxidants/metabolism , Ascorbic Acid/metabolism , Cadmium/metabolism , Glutathione/metabolism , Humans , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Transcription Factors/metabolism , Triticum/genetics , Triticum/metabolism
2.
Ecotoxicol Environ Saf ; 221: 112469, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34198190

ABSTRACT

Glutathione S-transferase (GST) is the key enzyme in glutathione (GSH) synthesis, and plays a crucial role in copper (Cu) detoxification. Nonetheless, its regulatory mechanisms remain largely unclear. In this study, we identified a Cu-induced glutathione S-transferase 1 (TaGST1) gene in wheat. Yeast one-hybrid (Y1H) screened out TaWRKY74, which was one member from the WRKY transcription factor family. The bindings between TaGST1 promoter and TaWRKY74 were further verified by using another Y1H and luciferase assays. Expression of TaWRKY74 was induced more than 30-folds by Cu stress. Functions of TaWRKY74 were tested by using transiently silence methods. In transiently TaWRKY74-silenced wheat plants, TaWRKY74 and TaGST1 expression, GST activity, and GSH content was significantly inhibited by 25.68%, 19.88%, 27.66%, and 12.68% in shoots, and 53.81%, 52.11%, 23.47%, and 17.11% in roots, respectively. However, contents of hydrogen peroxide, malondialdehyde, or Cu were significantly increased by 2.58%, 12.45%, or 37.74% in shoots, and 25.24%, 53.84%, and 103.99% in roots, respectively. Notably, exogenous application of GSH reversed the adverse effects of transiently TaWRKY74-silenced wheat plants during Cu stress. Taken together, our results suggesting that TaWRKY74 regulated TaGST1 expression and affected GSH accumulation under Cu stress, and could be useful to ameliorate Cu toxicity for crop food safety.


Subject(s)
Copper/toxicity , Glutathione Transferase/metabolism , Glutathione/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Triticum/drug effects , Transcription Factors/genetics , Triticum/genetics , Triticum/metabolism , Two-Hybrid System Techniques , Yeasts/genetics
3.
J Pineal Res ; 70(4): e12727, 2021 May.
Article in English | MEDLINE | ID: mdl-33666955

ABSTRACT

Melatonin (MT) is involved in various physiological processes and stress responses in animals and plants. However, little is known about the molecular mechanisms by which MT regulates potassium deficiency (DK) tolerance in crops. In this study, an appropriate concentration (50 µmol/L) was found to enhance the tolerance of wheat plants against DK. RNA-seq analysis showed that a total of 6253 and 5873 differentially expressed genes (DEGs) were separately identified in root and leaf tissues of the DK + MT-treated wheat plants. They functionally involved biological processes of secondary metabolite, signal transduction, and transport or catabolism. Of these, an upregulated high-affinity K transporter 1 (TaHAK1) gene was next characterized. TaHAK1 overexpression markedly enhanced the K absorption, while its transient silencing exhibited the opposite effect, suggesting its important role in MT-mediated DK tolerance. Moreover, yeast one-hybrid (Y1H) was used to screen the upstream regulators of TaHAK1 gene and the transcription factor TaNAC71 was identified. The binding between TaNAC71 and TaHAK1 promoter was evidenced by using Y1H, LUC, and EMSA assays. Transient overexpression of TaNAC71 in wheat protoplasts activated the TaHAK1 expression, whereas its transient silencing inhibited the TaHAK1 expression and aggravated the sensitivity to DK. Exogenous MT application greatly upregulated the expression of TaHAK1 in both transient overexpression and silencing systems. Our findings revealed some molecular mechanisms underlying MT-mediated DK tolerance and helped broaden its practical application in agriculture.


Subject(s)
Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant/physiology , Melatonin/metabolism , Plant Proteins/metabolism , Potassium Deficiency/metabolism , Triticum/metabolism , Adaptation, Physiological/physiology , Crops, Agricultural/metabolism , Plant Growth Regulators/metabolism
4.
Sci Rep ; 8(1): 7839, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29777146

ABSTRACT

In this paper, formation of zinc sulfide species during roasting of ZnO with FeS2 was investigated and its contribution on flotation was illustrated. The evolution process, phase and crystal growth were investigated by thermogravimetry (TG), X-Ray diffraction (XRD) along with thermodynamic calculation and scanning electron microscopy-Energy-dispersive X-ray spectroscopy (SEM-EDS), respectively, to interpret the formation mechanism of ZnS species. It was found that ZnS was initially generated at about 450 °C and then the reaction prevailed at about 600 °C. The generated FexS would dissolve into ZnS and then form (Zn, Fe)S compound in form of Fe2Zn3S5 when temperature increased to about 750 °C. This obviously accelerated ZnS phase formation and growth. In addition, it was known that increasing of ZnO dosage had few effects on the decomposition behavior of FeS2. Then, flotation tests of different zinc oxide materials before and after treatment were performed to further confirm that the flotation performances of the treated materials could be obviously improved. Finally, a scheme diagram was proposed to regular its application to mineral processing. It was systematically illustrated that different types of ZnS species needed to be synthetized when sulfidization roasting-flotation process was carried out to treat zinc oxide materials.

5.
J Hazard Mater ; 325: 251-260, 2017 Mar 05.
Article in English | MEDLINE | ID: mdl-27940114

ABSTRACT

Raw ilmenite concentrate containing Cr can be either as a resource or as one kind of the most hazardous solid waste. In order to recover titanium and chromium from the raw concentrate which was separated from the Promenade deposit, Gaza province, Mozambique, an innovative technology using modification of magnetic property followed by magnetic separation was proposed. Magnetic property, phase and surface morphology of the sample before and after oxidizing roasting were firstly characterized by magnetism, chemistry, XRD and MLA analyses to interpret the mechanism of oxidizing roasting of the ilmenite. Then, these factors such as oxidizing roasting temperature, residence time and magnetic induction affecting on magnetic separation performance were examined and the optimum process parameters were determined. A commercial concentrate containing 47.94% TiO2 and 0.23% Cr2O3 was obtained and the recovery of TiO2 and Cr2O3 was 78.52% and 5.42%, respectively. The tailing obtained was preliminarily concentrated by a high-intensity magnetic separator and a rough chromite concentrate was gained. In order to further purify the rough one, reducing roasting was carried out to transform the minerals containing hematite into the minerals containing magnetite, followed by a low-intensity magnetic separation. The effects of these parameters such as temperature, carbon powder dosage, holding time and magnetic induction on magnetic separation performance were investigated and the optimal conditions were determined. A concentrate containing 28.65% Cr2O3 was obtained and the total recovery of Cr2O3 was 84.18%.

SELECTION OF CITATIONS
SEARCH DETAIL
...