Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Trends Biochem Sci ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729842

ABSTRACT

Decades of work in developmental genetics has given us a deep mechanistic understanding of the fundamental signaling pathways underlying animal development. However, little is known about how these pathways emerged and changed over evolutionary time. Here, we review our current understanding of the evolutionary emergence of the Hippo pathway, a conserved signaling pathway that regulates tissue size in animals. This pathway has deep evolutionary roots, emerging piece by piece in the unicellular ancestors of animals, with a complete core pathway predating the origin of animals. Recent functional studies in close unicellular relatives of animals and early-branching animals suggest an ancestral function Hippo pathway of cytoskeletal regulation, which was subsequently co-opted to regulate proliferation and animal tissue size.

2.
Nat Commun ; 15(1): 145, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168080

ABSTRACT

The Hippo pathway controls developmental, homeostatic and regenerative tissue growth, and is frequently dysregulated in various diseases. Although this pathway can be activated by innate immune/inflammatory stimuli, the underlying mechanism is not fully understood. Here, we identify a conserved signaling cascade that leads to Hippo pathway activation by innate immune/inflammatory signals. We show that Tak1, a key kinase in innate immune/inflammatory signaling, activates the Hippo pathway by inducing the lysosomal degradation of Cka, an essential subunit of the STRIPAK PP2A complex that suppresses Hippo signaling. Suppression of STRIPAK results in the activation of Hippo pathway through Tao-Hpo signaling. We further show that Tak1-mediated Hippo signaling is involved in processes ranging from cell death to phagocytosis and innate immune memory. Our findings thus reveal a molecular connection between innate immune/inflammatory signaling and the evolutionally conserved Hippo pathway, thus contributing to our understanding of infectious, inflammatory and malignant diseases.


Subject(s)
Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Immunity, Innate
3.
Sci China Life Sci ; 66(7): 1459-1481, 2023 07.
Article in English | MEDLINE | ID: mdl-37335463

ABSTRACT

PIWI-clade proteins harness piRNAs of 24-33 nt in length. Of great puzzles are how PIWI-clade proteins incorporate piRNAs of different sizes and whether the size matters to PIWI/piRNA function. Here we report that a PIWI-Ins module unique in PIWI-clade proteins helps define the length of piRNAs. Deletion of PIWI-Ins in Miwi shifts MIWI to load with shorter piRNAs and causes spermiogenic failure in mice, demonstrating the functional importance of this regulatory module. Mechanistically, we show that longer piRNAs provide additional complementarity to target mRNAs, thereby enhancing the assembly of the MIWI/eIF3f/HuR super-complex for translational activation. Importantly, we identify a c.1108C>T (p.R370W) mutation of HIWI (human PIWIL1) in infertile men and demonstrate in Miwi knock-in mice that this genetic mutation impairs male fertility by altering the property of PIWI-Ins in selecting longer piRNAs. These findings reveal a critical role of PIWI-Ins-ensured longer piRNAs in fine-tuning MIWI/piRNA targeting capacity, proven essential for spermatid development and male fertility.


Subject(s)
Piwi-Interacting RNA , Testis , Humans , Male , Mice , Animals , Testis/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spermatogenesis/genetics , Proteins/metabolism , Fertility/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism
4.
Genes Dev ; 36(21-24): 1119-1128, 2022.
Article in English | MEDLINE | ID: mdl-36522128

ABSTRACT

The Hippo-YAP signaling pathway plays a critical role in development, homeostasis, regeneration, and tumorigenesis by converging on YAP, a coactivator for the TEAD family DNA-binding transcription factors, to regulate downstream transcription programs. Given its pivotal role as the nuclear effector of the Hippo pathway, YAP is indispensable in multiple developmental and tissue contexts. Here we report that the essentiality of YAP in liver and lung development can be genetically bypassed by simultaneous inactivation of the TEAD corepressor VGLL4. This striking antagonistic epistasis suggests that the major physiological function of YAP is to antagonize VGLL4. We further show that the YAP-VGLL4 antagonism plays a widespread role in regulating Hippo pathway output beyond normal development, as inactivation of Vgll4 dramatically enhanced intrahepatic cholangiocarcinoma formation in Nf2-deficient livers and ameliorated CCl4-induced damage in normal livers. Interestingly, Vgll4 expression is temporally regulated in development and regeneration and, in certain contexts, provides a better indication of overall Hippo pathway output than YAP phosphorylation. Together, these findings highlight the central importance of VGLL4-mediated transcriptional repression in Hippo pathway regulation and inform potential strategies to modulate Hippo signaling in cancer and regenerative medicine.


Subject(s)
Hippo Signaling Pathway , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , YAP-Signaling Proteins , TEA Domain Transcription Factors
5.
Cell ; 185(23): 4376-4393.e18, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36318920

ABSTRACT

The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.


Subject(s)
Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Signal Transduction
6.
Nanomaterials (Basel) ; 12(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296824

ABSTRACT

Vertically-stacked black phosphorus/molybdenum disulfide (BP/MoS2) heterostructures have broad prospects in flexible electronics. Bending is a common and highly concerned deformation for these flexible devices. However, the discrepancy in structures and properties among the components of 2D heterostructures often induces complex bending deformations. Here, the bending behaviors of BP, MoS2 and BP/MoS2 are investigated based on a molecular dynamics simulation. Compared with the constant bending stiffness of individual BP and MoS2, that of BP/MoS2 varies with the bending angle. Notably, a self-bending configuration induced by the lattice mismatch and size difference is found in BP/MoS2. The corresponding self-bending amplitude depends on the degree of size difference of each component and the "soft/hard" competition between them. Moreover, the size difference leads to a weakened bending stiffness, which is ascribed to the reduction in interlayer interaction. A prediction formula is proposed to evaluate the bending stiffness of BP/MoS2 with the size difference. This finding reveals novel ways for regulating the bending properties of 2D heterostructures, including the bending angle, characteristic size and stacking order. It offers an effective strategy for designing flexible devices with tunable bending performance.

7.
ACS Appl Mater Interfaces ; 14(36): 41489-41498, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36001530

ABSTRACT

Surfaces with controllable and gradient wettability often require an elaborate design of the microstructure or its response under electrical, thermal, optical, pH, and other stimuli. Generally, the wettability change under these physical or chemical effects relies on a complex mechanism that is difficult to be quantitatively described. In this study, an online controlling strategy for surface wettability and the corresponding theoretical model are put forward based on a bilayer graphene-like atomic structure. Molecular dynamics results indicate that the surface wettability varies toward hydrophilicity after sticking a bottom material regardless of its wettability. But such an influence becomes weak with increasing interlayer distance, and the overall wettability approaches that of the upper layer material gradually. This variation is elucidated by the increase of the work of adhesion, providing new insight into the wetting transparency of graphene. A theoretical model of the governing relationship is established based on the work of adhesion, which correlates the overall surface wettability with the interlayer distance and the wettabilities of individual materials. Moreover, a surface with a uniform wettability gradient is achieved by inclining the bottom material. The spontaneous and steady motion of droplets can be induced by this gradient wettability. The relevant speedup behavior is evaluated through a theoretical model considering the varying interlayer distance, which reveals the critical role of the lower layer. This study proposes a novel strategy for controllable wetting and relevant gradient surfaces using prevailing two-dimensional materials, paving new routes to many applications such as microfluidic chips, virus diagnosis, and intelligent sensors.

8.
Nat Genet ; 54(8): 1202-1213, 2022 08.
Article in English | MEDLINE | ID: mdl-35835915

ABSTRACT

Epigenetic remodeling is essential for oncogene-induced cellular transformation and malignancy. In contrast to histone post-translational modifications, how DNA methylation is remodeled by oncogenic signaling remains poorly understood. The oncoprotein YAP, a coactivator of the TEAD transcription factors mediating Hippo signaling, is widely activated in human cancers. Here, we identify the 5-methylcytosine dioxygenase TET1 as a direct YAP target and a master regulator that coordinates the genome-wide epigenetic and transcriptional reprogramming of YAP target genes in the liver. YAP activation induces the expression of TET1, which physically interacts with TEAD to cause regional DNA demethylation, histone H3K27 acetylation and chromatin opening in YAP target genes to facilitate transcriptional activation. Loss of TET1 not only reverses YAP-induced epigenetic and transcriptional changes but also suppresses YAP-induced hepatomegaly and tumorigenesis. These findings exemplify how oncogenic signaling regulates the site specificity of DNA demethylation to promote tumorigenesis and implicate TET1 as a potential target for modulating YAP signaling in physiology and disease.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Cycle Proteins , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Histones/genetics , Humans , Liver/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Oncogenes , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Cell Rep ; 40(4): 111143, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905720

ABSTRACT

Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Antiviral Agents , Drosophila/metabolism , Drosophila Proteins/metabolism , Humans , Immunity, Innate , Janus Kinases/metabolism , MAP Kinase Kinase Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction
10.
Nat Cell Biol ; 24(3): 373-383, 2022 03.
Article in English | MEDLINE | ID: mdl-35177822

ABSTRACT

Metabolic reprogramming is central to oncogene-induced tumorigenesis by providing the necessary building blocks and energy sources, but how oncogenic signalling controls metabolites that play regulatory roles in driving cell proliferation and tumour growth is less understood. Here we show that oncogene YAP/TAZ promotes polyamine biosynthesis by activating the transcription of the rate-limiting enzyme ornithine decarboxylase 1. The increased polyamine levels, in turn, promote the hypusination of eukaryotic translation factor 5A (eIF5A) to support efficient translation of histone demethylase LSD1, a transcriptional repressor that mediates a bulk of YAP/TAZ-downregulated genes including tumour suppressors in YAP/TAZ-activated cells. Accentuating the importance of the YAP/TAZ-polyamine-eIF5A hypusination-LSD1 axis, inhibiting polyamine biosynthesis or LSD1 suppressed YAP/TAZ-induced cell proliferation and tumour growth. Given the frequent upregulation of YAP/TAZ activity and polyamine levels in diverse cancers, our identification of YAP/TAZ as an upstream regulator and LSD1 as a downstream effector of the oncometabolite polyamine offers a molecular framework in which oncogene-induced metabolic and epigenetic reprogramming coordinately drives tumorigenesis, and suggests potential therapeutic strategies in YAP/TAZ- or polyamine-dependent human malignancies.


Subject(s)
Adaptor Proteins, Signal Transducing , Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Cell Proliferation/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polyamines , Trans-Activators/metabolism , YAP-Signaling Proteins
11.
Mater Horiz ; 9(4): 1243-1252, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35080571

ABSTRACT

Soft actuators with variable signal/color play an important role in the fields of targeted locomotion, artificial phototropism, drug screening, cargo transportation, and interactive sensing. The ability to achieve rapid response, large curvature, wide bending angle, and full-color display continues to be an unresolved challenge for artificial actuating materials. Inspired by the angle-dependent structural color of broad-tailed hummingbird and the Janus wettability of the lotus leaf, a Janus photonic soft actuator (JPSA) was fabricated by integrating an underwater super-oleophilic copper micro-nano array and oil-phobic inverse opal through a Laplace channel. The JPSA exhibits unidirectional permeability to underwater oil droplets. Attractively, with the combination of a swellable super-oleophilic surface and photonic crystals, JPSAs were endowed with oil-controlled reversible bending behavior with self-reporting angle-dependent color indication. We described for the first time the directional actuating mechanism induced by underwater oil unidirectional penetration and revealed the corresponding actuating kinetics and the inner-stress distribution/transfer by using structural color. As an extension of such theory, a rapid responsive JPSA with a wide bending angle and full-color self-reporting is further fabricated. This work provides an efficient strategy for oil directional transportation and separation in aqueous media and inspires the fabrication of a soft actuator/sensor with structural color self-reporting.


Subject(s)
Biomimetics , Photons , Water/chemistry , Wettability
12.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832367

ABSTRACT

Based on molecular dynamics simulations, the creep behaviors of nanocrystalline Ni before and after the segregation of Mo atoms at grain boundaries are comparatively investigated with the influences of external stress, grain size, temperature, and the concentration of Mo atoms taken into consideration. The results show that the creep strain rate of nanocrystalline Ni decreases significantly after the segregation of Mo atoms at grain boundaries due to the increase of the activation energy. The creep mechanisms corresponding to low, medium, and high stress states are respectively diffusion, grain boundary slip and dislocation activities based on the analysis of stress exponent and grain size exponent for both pure Ni and segregated Ni-Mo samples. Importantly, the influence of external stress and grain size on the creep strain rate of segregated Ni-Mo samples agrees well with the classical Bird-Dorn-Mukherjee model. The results also show that segregation has little effect on the creep process dominated by lattice diffusion. However, it can effectively reduce the strain rate of the creep deformation dominated by grain boundary behaviors and dislocation activities, where the creep rate decreases when increasing the concentration of Mo atoms at grain boundaries within a certain range.

13.
Phys Chem Chem Phys ; 23(17): 10164-10173, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33951125

ABSTRACT

Parameterizing an effective water model is a challenging issue because of the difficulty in maintaining a comprehensive balance among the diverse physical properties of water with a limited number of parameters. The advancement in machine learning provides a promising path to search for a reliable set of parameters. Based on the TIP4P water model, hence, about 6000 molecular dynamics (MD) simulations for pure water at 1 atm and in the range of 273-373 K are conducted here as the training data. The back-propagation (BP) neural network is then utilized to construct an efficient mapping between the model parameters and four crucial physical properties of water, including the density, vaporization enthalpy, self-diffusion coefficient and viscosity. Without additional time-consuming MD simulations, this mapping operation could result in sufficient and accurate data for high-population genetic algorithm (GA) to optimize the model parameters as much as possible. Based on the proposed parameterizing strategy, TIP4P-BG (a conventional four-site water model) and TIP4P-BGT (an advanced model with temperature-dependent parameters) are established. Both the water models exhibit excellent performance with a reasonable balance among the four crucial physical properties. The relevant mean absolute percentage errors are 3.53% and 3.08%, respectively. Further calculations on the temperature of maximum density, isothermal compressibility, thermal expansion coefficient, radial distribution function and surface tension are also performed and the resulting values are in good agreement with the experimental values. Through this water modeling example, the potential of the proposed data-driven machine learning procedure has been demonstrated for parameterizing a MD-based material model.

14.
Genes Dev ; 35(7-8): 495-511, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33766984

ABSTRACT

Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.


Subject(s)
Calcium-Binding Proteins/metabolism , Carcinogenesis/genetics , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic , Hemangioendothelioma, Epithelioid/genetics , Hemangioendothelioma, Epithelioid/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Trans-Activators/metabolism , Animals , Calcium-Binding Proteins/genetics , Cell Line, Tumor , Gene Fusion , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Trans-Activators/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins
15.
Dev Cell ; 50(3): 264-282, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31386861

ABSTRACT

The Hippo signaling pathway regulates diverse physiological processes, and its dysfunction has been implicated in an increasing number of human diseases, including cancer. Here, we provide an updated review of the Hippo pathway; discuss its roles in development, homeostasis, regeneration, and diseases; and highlight outstanding questions for future investigation and opportunities for Hippo-targeted therapies.


Subject(s)
Cell Cycle Proteins/genetics , Exosome Multienzyme Ribonuclease Complex/genetics , Gene Expression Regulation, Developmental , Neoplasms/genetics , Signal Transduction , Transcription Factors/genetics , Animals , Cell Cycle Proteins/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Humans , Neoplasms/metabolism , Transcription Factors/metabolism
16.
ACS Appl Mater Interfaces ; 11(31): 28562-28570, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31304739

ABSTRACT

Controllable directional transport of liquid droplets on a functionalized surface has been a challenge in the field of microfluidics because it does not require energy supply, and the physical mechanism of such self-driving transport exhibits extraordinary contribution to fundamental understanding of some biological processes and the design of microfluidic apparatus. In this paper, we report a novel design of a surface microstructure that can realize unidirectional self-driving liquid mercury (Hg) droplet transport on a graphene-covered copper (Cu) substrate with a three-dimensional surface microstructure. We have demonstrated that a liquid Hg droplet spontaneously propagates on a grooved Cu substrate covered by a monolayer graphene without any external force fields. Classical molecular dynamics results provide a profound insight on the self-driving process of Hg droplets. It shows that the Hg droplet undergoes acceleration, deceleration, and return stages successively from the narrow to wide ends of the gradient groove. Intriguingly, Hg droplets can move continuously and unidirectionally on the three-dimensional graphene-covered surface microstructure when they accumulate enough kinetic energy from the gradient groove to break the energy barrier at the step junctions between the two neighboring unit cells. The design of the zigzag textured surface covered by a monolayer graphene artfully uses the facts; (1) the monolayer graphene can effectively reduce the droplet pinning on the textured surface, (2) the hydrophobic graphene layer reduces the friction between Hg droplets and the substrate, and (3) the textured surface can permeably interact with the droplets through the monolayer graphene to achieve a continuous self-driving process. The findings reported here open a door to explore the graphene-covered functional surface to directional transport of liquid droplets and provide an in-depth understanding of the self-driving mechanism for liquid droplets on graphene-covered textured substrates.

17.
Sci Rep ; 9(1): 7380, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31089201

ABSTRACT

The mixture separation is of fundamental importance in the modern industry. The membrane-based separation technology has attracted considerable attention due to the high efficiency, low energy consumption, etc. However, the tradeoff between the permeability and selectivity is a crucial challenge, which is also difficult to adjust during the separation process. Based on the salt water-filled carbon nanotubes, a separation membrane with the adjustable molecular channels by the electric field is proposed in this work. The separation mechanism is clarified on the basis of the characteristic size of the molecular channel and the overall effective diameter of gas molecules. The molecular dynamics simulation is performed to examine the feasibility and validity of the designed separation membrane. The simulations on the binary gas mixture (H2 and N2) reveal the flow control and high-purity separation as the electric field intensity varies. As for the mixed gas with the three components (H2, N2 and Xe), the successive separations and the switch between the high-efficiency and high-purity separation could be achieved only through adjusting the electric field intensity. This work incorporates the control into the membrane-based separation technology, which provides a novel solution for the complex industrial separation requirement.

18.
Elife ; 82019 03 22.
Article in English | MEDLINE | ID: mdl-30901309

ABSTRACT

The Hippo tumor suppressor pathway regulates tissue growth in Drosophila by restricting the activity of the transcriptional coactivator Yorkie (Yki), which normally complexes with the TEF/TEAD family DNA-binding transcription factor Scalloped (Sd) to drive the expression of growth-promoting genes. Given its pivotal role as a central hub in mediating the transcriptional output of Hippo signaling, there is great interest in understanding the molecular regulation of the Sd-Yki complex. In this study, we identify Nerfin-1 as a transcriptional repressor that antagonizes the activity of the Sd-Yki complex by binding to the TEA DNA-binding domain of Sd. Consistent with its biochemical function, ectopic expression of Nerfin-1 results in tissue undergrowth in an Sd-dependent manner. Conversely, loss of Nerfin-1 enhances the ability of winner cells to eliminate loser cells in multiple scenarios of cell competition. We further show that INSM1, the mammalian ortholog of Nerfin-1, plays a conserved role in repressing the activity of the TEAD-YAP complex. These findings reveal a novel regulatory mode converging on the transcriptional output of the Hippo pathway that may be exploited for modulating the YAP oncoprotein in cancer and regenerative medicine.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Transcription, Genetic , YAP-Signaling Proteins
19.
Nanotechnology ; 30(27): 275702, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30836340

ABSTRACT

The effects of segregation of impurity molybdenum (Mo) atoms on the tensile mechanical properties of nanocrystalline nickel (Ni) are investigated with molecular dynamics simulation. The results show that the segregation of Mo atoms induces an obvious increase in the elastic modulus and strength of nanocrystalline Ni, and the strengthening effect is more significant with smaller grain size. When the grain size decreases below a critical value, at which the softening occurs in non-segregated Ni-Mo alloy, no evident softening phenomenon is observed in Mo-segregated systems. Furthermore, based on a bicrystal configuration, it is found that Mo atoms segregating to the grain boundary reduce the energy and mobility of the grain boundary, increasing the grain boundary stability and thus accommodating the strengthening. The present findings will shed light on the fabrication of high strength nanocrystalline materials by controlling the segregation of atoms.

20.
ACS Appl Mater Interfaces ; 10(51): 44716-44721, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30501168

ABSTRACT

Mechanically guided assembly is considered a facile and scalable methodology for fabrication of three-dimensional (3D) structures. However, most of the previous methods require multistep processes for bonding bi- or multilayers and only result in non-freestanding 3D structures because of usage of a supporting elastomer substrate. Herein, we report a functional elastomer composite that can be transformed to a freestanding and monolithic 3D structure driven by the mechanically guided assembly. Photolithography can be used to selectively tune the mechanical properties of UV-exposed regions which exhibit enhanced ductility compared with the nonexposed regions. Thus, a gradient of the residual strain in the thickness direction makes the films assemble into 3D structures. These 3D structures are also predicted by our computational models using finite element simulations, which yields a reasonable agreement with the experiments. The systematically designed 2D structures with varied patterns can be transformed to various 3D structures with the control of the residual strain gradient, via key processing parameters including pre-strain, film thickness, and UV exposure time. By integrating different active electronic components on the fabricated 3D structures, potential applications of this 3D platform in electronics were demonstrated. This study offers a unique capability in constructing monolithic and freestanding 3D assembly, paving new routes to many applications such as wearable electronics, smart textiles, soft robotics, and structural health monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...