Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Crit Rev Food Sci Nutr ; : 1-37, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794836

ABSTRACT

Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.

2.
Gene ; 922: 148544, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38734187

ABSTRACT

This study introduces an efficient RPA-PfAgo detection system for the MTHFR C677T polymorphism, proposing a potential strategy to simplify the genotyping process. By optimizing recombinase polymerase amplification (RPA) with Pyrococcus furiosus Argonaute (PfAgo) nucleases, we achieved DNA amplification at a constant temperature. The assay was fine-tuned through meticulous primer and guide DNA selection, with optimal conditions established at 2.0 µL of MgAc, a reaction temperature of 42 °C, and a 10-minute reaction time for RPA. Further optimization of the PfAgo cleavage assay revealed the ideal concentrations of MnCl2, guide DNA, molecular beacon probes, the PfAgo enzyme, and the RPA product to maximize sensitivity and specificity. Clinical validation of 20 samples showed 100% concordance with Sanger sequencing, confirming the method's precision. The RPA-PfAgo system is a promising tool for on-site genotyping, with broad applications in personalized medicine and disease prevention.


Subject(s)
Genotyping Techniques , Methylenetetrahydrofolate Reductase (NADPH2) , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Pyrococcus furiosus/genetics , Pyrococcus furiosus/enzymology , Genotype , Nucleic Acid Amplification Techniques/methods , Argonaute Proteins/genetics , Recombinases/metabolism , Recombinases/genetics
3.
Int J Food Microbiol ; 417: 110697, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38642433

ABSTRACT

Foodborne illness caused by Salmonella spp. is one of the most prevalent public health problems globally, which have brought immeasurable economic burden and social impact to countries around the world. Neither current nucleic acid amplification detection method nor standard culture method (2-3 days) are suitable for field detection in areas with a heavy burden of Salmonella spp. Here, we developed a highly sensitive and accurate assay for Salmonella spp. detection in less than 40 min. Specifically, the invA gene of Salmonella spp. was amplified by recombinase polymerase amplification (RPA), followed by Pyrococcus furiosus Argonaute (PfAgo)-based target sequence cleavage, which could be observed by a fluorescence reader or the naked eye. The assay offered the lowest detectable concentration of 1.05 × 101 colony forming units/mL (CFU/mL). This assay had strong specificity and high sensitivity for the detection of Salmonella spp. in field samples, which indicated the feasibility of this assay.


Subject(s)
Food Microbiology , Nucleic Acid Amplification Techniques , Pyrococcus furiosus , Salmonella , Pyrococcus furiosus/genetics , Salmonella/genetics , Salmonella/isolation & purification , Nucleic Acid Amplification Techniques/methods , Food Safety , Recombinases/metabolism , Recombinases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Sensitivity and Specificity , Food Contamination/analysis
4.
Int Immunopharmacol ; 132: 111959, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38554442

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is difficult to treat due to a lack of targeted therapies. In this study, we aimed to investigate whether a natural flavonoid compound called ononin could be effective in treating TNBC by triggering ferroptosis in MDA-MB-231 and 4 T1 cell lines, and MDA-MB-231-xenograft nude mice model. Ononin inhibited TNBC through ferroptosis, which was determined by MTT assay, flow cytometry, RT-PCR, immunofluorescence, transmission electron microscopy, histological analysis, western blot and bioluminescence assay. Our results showed that treatment with ononin led to increased levels of malondialdehyde and reactive oxygen species and decreased activity of superoxide dismutase, which are indicatives of ferroptosis. We also found that ononin downregulated two key markers of ferroptosis, SLC7A11 and Nrf2, at both the transcriptional and translational level. Additionally, the administration of ononin resulted in a notable decrease in tumor size and weight in the mouse model. Furthermore, it was observed to enhance the rate of apoptosis in TNBC cells. Importantly, ononin did not induce any histological changes in the kidney, liver, and heart. Taken together, our findings suggest that ononin could be a promising therapeutic strategy for TNBC, and that it works by disrupting the Nrf2/SLC7A11 axis through ferroptosis. These results are encouraging and may lead to the development of new treatments for this challenging cancer subtype.


Subject(s)
Ferroptosis , Mice, Nude , NF-E2-Related Factor 2 , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Ferroptosis/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Humans , Female , Cell Line, Tumor , NF-E2-Related Factor 2/metabolism , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects
5.
Curr Med Chem ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38310399

ABSTRACT

Nepetin is a type of O-methylated flavone (6-hydroxy luteolin) and has been found in many herbal medicines that exhibit various pharmacological properties, including anti-inflammatory responses. Here, we aimed to investigate the efficacy of nepetin in attenuating inflammatory responses in cultured keratinocytes and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD) in BALB/c mice. Various assay methods including cell viability, flow cytometry, fluorometry, confocal microscopy, western blot, ELISA techniques, staining methods, score and scratch frequency assessment, etc. were employed to explore the mechanisms. LPS-treated keratinocytes showed a significant increase in inflammatory mediators (iNOS, COX-2, PGES2, and NO) and cytokines (IL-1ß, IL-6, and TNF-α) in a dose-dependent manner. Treatment with nepetin prevented LPS-induced cell death and inhibited inflammatory mediators and the production of cytokines in cultured keratinocytes. This inhibition was achieved by nepetin, which inhibited LPS-induced ROS production and the translocation of NF-κB in the cultures, thereby inhibiting the generation of inflammatory mediators and/or cytokines. In a mouse model of AD, treatment with nepetin reduced skin inflammation symptoms in a dose-dependent manner, as evidenced by the significant reduction of inflammation- related cytokines, skin lesions, and behavior scores. Based on the present in vitro and in vivo study, nepetin is the safest bioactive compound with potential therapeutic applications for AD-related skin lesions and adverse skin reactions.

6.
Sci Rep ; 14(1): 4867, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418841

ABSTRACT

Baccaurea ramiflora Lour., an evergreen tree of the Baccaurea genus of the Phyllanthaceae family, is primarily distributed in South Asia, Southeast Asia, and southern China, including southern Yunnan Province. It is a wild or semi-cultivated tree species with ornamental, edible, and medicinal value, exhibiting significant development potential. In this study, we present the whole-genome sequencing of B. ramiflora, employing a combination of PacBio SMRT and Illumina HiSeq 2500 sequencing techniques. The assembled genome size was 975.8 Mb, with a contig N50 of 509.33 kb and the longest contig measuring 7.74 Mb. The genome comprises approximately 73.47% highly repetitive sequences, of which 52.1% are long terminal repeat-retrotransposon sequences. A total of 29,172 protein-coding genes were predicted, of which 25,980 (89.06%) have been annotated, Additionally, 3452 non-coding RNAs were identified. Comparative genomic analysis revealed a close relationship between B. ramiflora and the Euphorbiaceae family, with both being sister groups that diverged approximately 59.9 million years ago. During the evolutionary process, B. ramiflora exhibited positive selection in 278 candidate genes. Synonymous substitution rate and collinearity analysis demonstrated that B. ramiflora underwent a single ancient genome-wide triploidization event, without recent genome-wide duplication events. This high-quality B. ramiflora genome provides a valuable resource for basic research and tree improvement programs focusing on the Phyllanthaceae family.


Subject(s)
Genome, Plant , Malpighiales , China , Repetitive Sequences, Nucleic Acid , Evolution, Molecular , Phylogeny
7.
J Ethnopharmacol ; 323: 117655, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158099

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue Tang (DBT) has been used for over 800 years to enhance Qi and nourish Blood, and it is particularly beneficial for cancer patients. Recent research has shown that combining DBT with chemotherapy agents leads to superior anti-cancer effects, thereby enhancing therapeutic efficacy. AIM OF THE STUDY: The aim of this study was to evaluate the effectiveness of a combination therapy involving doxorubicin (DOX) and Danggui Buxue Tang (DBT) in the treatment of triple-negative breast cancer (TNBC) and to elucidate the underlying mechanisms of action. MATERIALS AND METHODS: In vitro experiments were performed using MDA-MB-231 and 4T1 cells, while in vivo experiments were carried out using MDA-MB-231 xenograft mice. The therapeutic effects of the combination therapy were evaluated using various techniques, including MTT assay, colony formation assay, flow cytometry, transwell assay, immunofluorescence, transmission electron microscopy (TEM), histological analysis, western blotting, and bioluminescence assay. RESULTS: DBT was found to enhance DOX's anti-TNBC activity in vitro by promoting ferroptosis, as evidenced by the observed mitochondrial morphological changes using TEM. The combination therapy was also found to reduce the expression of Nrf2, HO-1, and GPX4, which are all targets for ferroptosis induction, while simultaneously increasing ROS production. Additionally, the combination therapy reduced nuclear accumulation and constitutive activation of Nrf2, which is a significant cause of chemotherapy resistance and promotes cancer growth. In vivo experiments using an MDA-MB-231 xenograft animal model revealed that the combination therapy significantly reduced tumor cell proliferation and accelerated TNBC deaths by modulating the Nrf2/HO-1/GPX4 axis, with no evidence of tissue abnormalities. Moreover, the combination therapy exhibited a liver protective effect, and administration of Fer-1 was able to reduce the ROS formation produced by the DBT + DOX combination therapy. CONCLUSION: This study provides evidence that the combination therapy of DOX and DBT has the potential to treat TNBC by promoting ferroptosis through the Nrf2/HO-1/GPX4 axis.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , NF-E2-Related Factor 2 , Reactive Oxygen Species , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Disease Models, Animal
8.
Curr Res Food Sci ; 7: 100609, 2023.
Article in English | MEDLINE | ID: mdl-37860145

ABSTRACT

In recent years, meat adulteration safety incidents have occurred frequently, triggering widespread attention and discussion. Although there are a variety of meat quality identification methods, conventional assays require high standards for personnel and experimental conditions and are not suitable for on-site testing. Therefore, there is an urgent need for a rapid, sensitive, high specificity and high sensitivity on-site meat detection method. This study is the first to apply RPA combined with CRISPR/Cas12a technology to the field of multiple meat identification. The system developed by parameter optimization can achieve specific detection of chicken, duck, beef, pork and lamb with a minimum target sequence copy number as low as 1 × 100 copies/µL for 60 min at a constant temperature. LFD test results can be directly observed with the naked eye, with the characteristics of fast, portable and simple operation, which is extremely in line with current needs. In conclusion, the meat identification RPA-CRISPR/Cas12a-LFD system established in this study has shown promising applications in the field of meat detection, with a profound impact on meat quality, and provides a model for other food safety control programs.

9.
Front Nutr ; 10: 1170084, 2023.
Article in English | MEDLINE | ID: mdl-37701374

ABSTRACT

Introduction: Food-components-target-function (FCTF) is an evaluation and prediction model based on association rule mining (ARM) and network interaction analysis, which is an innovative exploration of interdisciplinary integration in the food field. Methods: Using the components as the basis, the targets and functions are comprehensively explored in various databases and platforms under the guidance of the ARM concept. The focused active components, key targets and preferred efficacy are then analyzed by different interaction calculations. The FCTF model is particularly suitable for preliminary studies of medicinal plants in remote and poor areas. Results: The FCTF model of the local medicinal food Laoxianghuang focuses on the efficacy of digestive system cancers and neurological diseases, with key targets ACE, PTGS2, CYP2C19 and corresponding active components citronellal, trans-nerolidol, linalool, geraniol, α-terpineol, cadinene and α-pinene. Discussion: Centuries of traditional experience point to the efficacy of Laoxianghuang in alleviating digestive disorders, and our established FCTF model of Laoxianghuang not only demonstrates this but also extends to its possible adjunctive efficacy in neurological diseases, which deserves later exploration. The FCTF model is based on the main line of components to target and efficacy and optimizes the research level from different dimensions and aspects of interaction analysis, hoping to make some contribution to the future development of the food discipline.

10.
J Pharm Biomed Anal ; 235: 115632, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37573622

ABSTRACT

In this study, a novel genotyping point-of-care testing (POCT) rapid detection device, the locked nucleic acid (LNA)-amplification refractory mutation system (ARMS)-recombinase polymerase amplification (RPA)-GoldMag lateral flow assay (LFA) platform, was provided by mining and synthesis based on prior technology. Research methods based on system-integrated innovation and knowledge-integrated generation have become a new trend in technology development. Here, we exploit the combination of LNA-coupled ARMS-RPA and gold nanoparticle probe technology for detection signal amplification, thus pioneering a new tool for accurate, rapid, and cost-effective genotyping. We also performed SNP typing detection and clinical validation of this new assay platform using common glucose-6-phosphate dehydrogenase (G6PD) gene single nucleotide polymorphism (SNP) loci, and the results demonstrated the high sensitivity, specificity, stability, accuracy and feasibility of the LNA-ARMS-RPA-GoldMag lateral flow assay platform. It is hoped that this new technology will make a significant contribution to the field of POCT rapid diagnosis and aim to expand the application space, reflecting its clinical application value and development prospects.


Subject(s)
Metal Nanoparticles , Recombinases , Recombinases/genetics , Gold , Sensitivity and Specificity , Point-of-Care Testing , Mutation
11.
ACS Infect Dis ; 9(8): 1534-1545, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37493514

ABSTRACT

Microscopic examination of thick and thin blood smears stained with Giemsa dye is considered the primary diagnostic tool for the confirmation and management of suspected clinical malaria. However, detecting gametocytes is relatively insensitive, particularly in asymptomatic individuals with low-density Plasmodium infections. To complement existing diagnostic methods, a rapid and ultrasensitive point-of-care testing (POCT) platform for malaria detection is urgently needed and necessary. A platform based on recombinase polymerase amplification (RPA) followed by CRISPR/Cas12a (referred to as RPA-CRISPR/Cas12a) was developed and optimized for the determination of Plasmodium spp. parasites, particularly Plasmodium falciparum, using a fluorescence-based assay (FBDA), lateral flow test strips (LFTS), or naked eye observation (NEO). Then, the established platform was assessed with clinical malaria isolates. Under optimal conditions, the detection threshold was 1 copy/µL for the plasmid, and the limit of detection was 3.11-7.27 parasites/µL for dried blood spots. There was no cross-reactivity against blood-borne pathogens. For the accuracies of RPA-CRISPR/Cas12a, Plasmodium spp. and P. falciparum testing were 98.68 and 94.74%, respectively. The method was consistent with nested PCR results and superior to the qPCR results. RPA-CRISPR/Cas12a is a rapid, ultrasensitive, and reliable platform for malaria diagnosis. The platform requires no or minimal instrumentation for nucleic acid amplification reactions and can be read with the naked eye. Compared with similar diagnostic methods, this platform improves the reaction speed while reducing detection requirements. Therefore, this platform has the potential to become a true POCT for malaria parasites.

12.
Altern Ther Health Med ; 29(5): 54-64, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37052968

ABSTRACT

Context: Danggui Buxue Tang (DBT) is a classical Chinese medicine that practitioners have used for thousands of years. Historically, those practitioners have used 16 prescriptions of DBT but currently are using only three prescriptions. Objective: The review intended to summarize pharmacological profiles of DBT and also clarify the major active chemicals found within it to provide a better understanding of the significance of DBT clinically. Design: The research team performed a narrative review by searching Pubmed databases. The search used the keywords Danggui Buxue Tang, bioactive chemcials, pharmacological functions. Setting: The databases setting were done by Gong Guowei and Zhou Xuan in the Zunyi Medical University, Zhuhai campus. Results: There are multiple results related to the crude fractions isolated from Danggui Buxue Tang, and also included the clinical trails. Conclusions: Thousands of years of clinical experience have ensured the efficacy of TCM treatments, which can determine the direction of basic research. That research can modify formulas at the molecular level to improve targeting and specificity in the treatment of specific diseases. As a result, the discovery and identification of new compounds within the herbal complex can provide useful research ideas and ensure the viability of new drug development.


Subject(s)
Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
13.
Phytother Res ; 37(7): 2864-2876, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36810895

ABSTRACT

Danggui Buxue Tang (DBT) is a well-known Chinese herbal recipe often prescribed in clinical treatment for menopausal and cardiovascular symptoms. 5-Fluorouracil (5-FU) is a chemotherapy drug that treats several cancers; however, it causes severe adverse effects and multidrug resistance. Combining natural medications can reduce the side effects of 5-FU use. Hence, we aimed to determine the role of DBT in strengthening the anticancer capabilities of 5-FU in a cultured colorectal adenocarcinoma cell line (HT-29 cell) and xenograft nude mice. HT-29 cells cultured with DBT did not exhibit cytotoxicity. However, co-administration of DBT with 5-FU significantly increased apoptosis and the expression of apoptotic markers. The inhibition of proliferation induced by DBT and 5-FU was shown to be mediated by c-Jun N-terminal kinase signaling. In addition, the potentiation effect of 5-FU and DBT was demonstrated in reducing tumor size, expressions of Ki67 and CD34 in HT-29 xenograft mice. This finding suggests that DBT can work with 5-FU as a novel chemotherapeutic strategy for treating colon cancer.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Drugs, Chinese Herbal , Humans , Mice , Animals , Fluorouracil/pharmacology , JNK Mitogen-Activated Protein Kinases , Mice, Nude , Drugs, Chinese Herbal/pharmacology , Adenocarcinoma/drug therapy
14.
Cancers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36765716

ABSTRACT

Osteosarcoma is a common malignancy of the bone. Due to its high metastatic properties, osteosarcoma becomes the leading cause of cancer death worldwide. Ononin is an isoflavone glycoside known to have various pharmacological properties, including antioxidant and anti-inflammatory activities. In the present study, we aimed to investigate the efficacy of ononin on osteosarcoma cell migration, invasion, and the underlying mechanisms. The in vitro anti-tumorigenic and anti-migratory properties of ononin were determined by MTT, colony formation, invasion, and migration in MG-63 and U2OS osteosarcoma cell lines. The results were compared with the standard chemotherapeutic drug, doxorubicin (DOX), as a positive control. The dose-dependent manners of ononin treatment increased the expression of apoptosis and inhibition of cell proliferation through the EGFR-Erk1/2 signaling pathways. Additionally, ononin significantly inhibited the invasion and migration of human osteosarcoma cells. For consistency, we used the MG-63-xenograft mice model to confirm the in vivo anti-tumorigenic and anti-migratory efficacy of ononin by inhibiting the protein expressions of EGFR-Erk1/2 and MMP2/9. According to the histological study, ononin had no adverse effect on the liver and kidney. Overall, our findings suggested that ononin could be a potentially effective agent against the development and metastasis of osteosarcoma.

15.
Cells ; 11(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36497110

ABSTRACT

Esophageal cancer is a lethal disease that frequently occurs in developing countries, the incidence of which could be declined by drinking EGCG-enriched drinks or food. SERPINB2, whose complex functions and regulations are not yet fully understood, are induced by multiple inflammatory molecules and anti-tumor agents. Here, we identify 2444 EGCG-regulated genes in esophageal cancer cells, including SERPINB2. EGCG treatment recruits NF-κB at the promoter and enhancers of SERPINB2 and activates gene transcription, which is repressed by NF-κB knockdown or inhibition. Loss of SERPINB2 leads to a faster migration rate and less expression of Caspase-3 in cancer cells. Our study demonstrates that SERPINB2 is a new tumor-suppressor gene involved in cell movement and apoptosis and could be a therapeutic target for esophageal cancer.


Subject(s)
Apoptosis , Esophageal Neoplasms , Intracellular Signaling Peptides and Proteins , Humans , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , NF-kappa B/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Genes, Tumor Suppressor
16.
Microbiol Spectr ; 10(3): e0041322, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35670601

ABSTRACT

Artemisinin-based combination therapies (ACTs) resistance has emerged and could be diffusing in Africa. As an offshore island on the African continent, the island of Bioko in Equatorial Guinea is considered severely affected and resistant to drug-resistant Plasmodium falciparum malaria. However, the spatial and temporal distribution remain unclear. Molecular monitoring targeting the Pfcrt, Pfk13, Pfpm2, and Pfmdr1 genes was conducted to provide insight into the impact of current antimalarial drug resistance on the island. Furthermore, polymorphic characteristics, haplotype network, and the effect of natural selection of the Pfk13 gene were evaluated. A total of 152 Plasmodium falciparum samples (collected from 2017 to 2019) were analyzed for copy number variation of the Pfpm2 gene and Pfk13, Pfcrt, and Pfmdr1 mutations. Statistical analysis of Pfk13 sequences was performed following different evolutionary models using 96 Bioko sequences and 1322 global sequences. The results showed that the prevalence of Pfk13, Pfcrt, and Pfmdr1 mutations was 73.68%, 78.29%, and 75.66%, respectively. Large proportions of isolates with multiple copies of Pfpm2 were observed (67.86%). In Bioko parasites, the genetic diversity of Pfk13 was low, and purifying selection was suggested by Tajima's D test (-1.644, P > 0.05) and the dN/dS test (-0.0004438, P > 0.05). The extended haplotype homozygosity analysis revealed that Pfk13_K189T, although most frequent in Africa, has not yet conferred a selective advantage for parasitic survival. The results suggested that the implementation of continuous drug monitoring on Bioko Island is an essential measure. IMPORTANCE Malaria, one of the tropical parasitic diseases with a high transmission rate in Bioko Island, Equatorial Guinea, especially caused by P. falciparum is highly prevalent in this region and is commonly treated locally with ACTs. The declining antimalarial susceptibility of artemisinin-based drugs suggested that resistance to artemisinin and its derivatives is developing in P. falciparum. Copy number variants in Pfpm2 and genetic polymorphisms in Pfk13, Pfcrt, and Pfmdr1 can be used as risk assessment indicators to track the development and spread of drug resistance. This study reported for the first time the molecular surveillance of Pfpm2, Pfcrt, Pfk13, and Pfmdr1 genes in Bioko Island from 2017 to 2019 to assess the possible risk of local drug-resistant P. falciparum.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , DNA Copy Number Variations , Drug Resistance/genetics , Equatorial Guinea/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Protozoan Proteins/genetics , Protozoan Proteins/pharmacology , Protozoan Proteins/therapeutic use
17.
Heliyon ; 8(12): e12557, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36643327

ABSTRACT

Phoenix Dancong tea, a variety of oolong tea, is produced in Chaozhou, Guangdong Province, China, and is characterized by numerous hybridizations and polyploidization. To assess the genetic diversity and phylogenetic relationships among Phoenix Dancong tea and other oolong teas, an integrated circular chloroplast genome was constructed for thirty species of Phoenix Dancong tea from Chaozhou. The genome of Phoenix dancong tea is a circular molecule of 157,041-157,137 bp, with a pair of inverted repeats (26,072-26,610 bp each) separated by a large single copy (86,615-86,658 bp) and small single copy (18,264-18,284 bp). A total of 135 unique genes were encoded, including 90 protein coding genes, 37 tRNAs and 8 rRNAs. A comparative analysis with the other seven species in the oolong tea family that have been sequenced to date revealed similarities in structural organization, gene content and arrangement. Repeated sequence analysis identified 17-23 tandem repeats, 20-24 forward repeats and 25-27 palindromic repeats. Additionally, a total of 65-70 simple sequence repeats were detected, with mononucleotide repeats being the most common. Phylogenetic analyses showed that Phoenix Dancong tea and Fujian oolong tea were clustered with other cultivated Camellia sinensis in the genus Camellia of the family Theaceae, while the two oolong tea species were relatively independently cross-embedded in the genus, Camellia. Close genetic relationships were observed between Phoenix Dancong tea and other oolong teas, and the overall chloroplast genomes of oolong tea showed patterns with low variations and conserved evolution. The availability of Phoenix Dancong tea chloroplast genomes not only elucidated the relationship among oolong teas from different origins in Guangdong and Fujian but also provided valuable genetic resources to assist further molecular studies on the taxonomic and phylogenomic resolution of the genus Camellia.

18.
Oxid Med Cell Longev ; 2022: 5122448, 2022.
Article in English | MEDLINE | ID: mdl-36605098

ABSTRACT

Lung cancer is a leading global cause of cancer-related death in both males and females. Non-small-cell lung cancer (NSCLC) is the most commonly diagnosed cancer type that can be difficult to control with conventional chemotherapeutic and surgical approaches resulting in a poor prognosis. Paclitaxel (PTX) is a commonly used chemotherapeutic drug for NSCLC, which can cause tissue injury in healthy cells and affect the quality of life in patients with cancer. In order to treat NSCLC, alternative medications with minimal or no side effects are highly needed. Ononin is an isoflavone glycoside extracted from Astragali Radix (AR) that has various pharmacological activities. Therefore, this study investigated whether ononin inhibits NSCLC progression and promotes apoptosis synergistically with PTX both in vitro and in vivo. Antitumorigenic properties of ononin were determined by MTT assay, colony formation assay, migratory capacity, and apoptotic marker expression in A549 and HCC827 cells. The combination of ononin with PTX increased the expression of apoptotic markers and ROS generation and inhibited cell proliferation through the PI3K/Akt/mTOR signaling pathways. Furthermore, ononin prevented the translocation of NF-κB from cytosol to the nucleus. Also, we used the xenograft NSCLC mice model to confirm the in vivo antitumorigenic efficacies of ononin by reduction of CD34 and Ki67 expressions. Based on the histological analysis, the cotreatment of PTX and ononin reduced PTX-induced liver and kidney damage. Overall, our findings suggested that the therapeutic index of PTX-based chemotherapy could be improved by reducing toxicity with increasing antitumor capabilities when combined with ononin.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Isoflavones , Lung Neoplasms , Male , Female , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Quality of Life , Isoflavones/pharmacology , Isoflavones/therapeutic use , Paclitaxel/pharmacology , Apoptosis , TOR Serine-Threonine Kinases/pharmacology , Cell Proliferation , Cell Line, Tumor
19.
Front Genet ; 13: 1000290, 2022.
Article in English | MEDLINE | ID: mdl-36704359

ABSTRACT

Objectives: Baise, a multiethnic inhabited area of southwestern China, is a historical malaria-endemic area with a high prevalence of G6PD deficiency. However, few studies of G6PD deficiency have been conducted in this region. Therefore, we performed a genetic analysis of G6PD deficiency in the Baise population from January 2020 to June 2021. Methods: A SNPscan assay was developed to simultaneously detect 33 common Chinese G6PD mutations. 30 G6PD-deficient samples were used for the method's validation. Then, a total of 709 suspected G6PD-deficient samples collated from the Baise population were evaluated for G6PD status, type of mutation and effect of mutations. Results: The SNPscan test had a sensitivity of 100% [95% confidence interval (CI): 94.87%-100%] and a specificity of 100% (95% CI: 87.66%-100%) for identifying G6PD mutations. A total of fifteen mutations were identified from 76.72% (544/709) of the samples. The most common mutation was discovered to be G6PD Kaiping (24.12%), followed by G6PD Canton (17.91%), and G6PD Gaohe (11.28%). We compared the G6PD mutation spectrum among Zhuang, Han and other Southeast Asian populations, and the Zhuang population's mutation distribution was quite similar to that in the Han population. Conclusion: This study provided a detailed G6PD mutation spectrum in Baise of southwestern China and will be valuable for the diagnosis and research of G6PD deficiency in this area. Furthermore, the SNPscan assay could be used to quickly diagnose these G6PD mutations accurately.

20.
Front Vet Sci ; 8: 764135, 2021.
Article in English | MEDLINE | ID: mdl-34722715

ABSTRACT

Hypoxia exposure can cause a series of physiological and biochemical reactions in the organism and cells. Our previous studies found the milk fat rate increased significantly in hypoxic dairy cows, however, its specific metabolic mechanism is unclear. In this experiment, we explored and verified the mechanism of hypoxia adaptation based on the apparent and omics results of animal experiments and in vitro cell model. The results revealed that hypoxia exposure was associated with the elevation of AGPAT2-mediated glycerophospholipid metabolism. These intracellular metabolic disorders consequently led to the lipid disorders associated with apoptosis. Our findings update the existing understanding of increased adaptability of dairy cows exposure to hypoxia at the metabolic level.

SELECTION OF CITATIONS
SEARCH DETAIL
...