Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Mol Biol Evol ; 39(1)2022 01 07.
Article in English | MEDLINE | ID: mdl-34718707

ABSTRACT

Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.


Subject(s)
Rhododendron , Asia , Biological Evolution , Phylogeny , Plants , Rhododendron/genetics
2.
Ying Yong Sheng Tai Xue Bao ; 28(3): 829-837, 2017 Mar 18.
Article in Chinese | MEDLINE | ID: mdl-29741009

ABSTRACT

A series of typical abandoned croplands in the regions of Ruanliang and Yingliang in the Ordos Plateau, China, were selected, and dynamics of the surface litter, biological soil crust and soil bulk density, soil texture, and soil moisture in different soil layers were investigated. The results showed that in the abandoned cropland in Ruanliang, the clay particle content and surface litter of the surface soil layer (0-10 cm) increased during the restoration process, while that of soil bulk density substantially decreased and soil water content slightly increased in the surface soil. In the medium soil layer (10-30 cm), the clay particle content increased and the soil water content slightly decreased. In the deep soil layer (30-50 cm), there was a relatively large variation in the physical properties. In the abandoned cropland in Yingliang, the coverage of litter and the coverage and thickness of the biological soil crust increased during the abandonment process. The surface soil bulk density, soil clay particle content and soil water content remained constant in 0-10 cm soil layer, while the physical properties varied substantially in 10-40 cm soil layer. The shallow distribution of the soil water content caused by the accumulation of the litter and clay particles on the soil surface might be the key reason of the replacement of the semi-shrub Artemisia ordosica community with a perennial grass community over the last 20 years of the abandoned cropland in Ruanliang. The relatively high soil water content in the shallow layer and the development of the biological soil crust might explain why the abandoned cropland in Yingliang was not invaded by the semi-shrub A. ordosica during the restoration process.


Subject(s)
Crops, Agricultural , Soil , China , Ecosystem , Water
3.
Physiol Plant ; 139(1): 39-54, 2010 May.
Article in English | MEDLINE | ID: mdl-20059730

ABSTRACT

Tolerance to the effects of drought and subsequent recovery after a rainfall appear to be critical for plants in the karst regions of southwestern China, which are characterized by frequent but temporary drought events. This study investigated the effects of drought intensity and repetition on photosynthesis and photoprotection mechanisms of karst plants during successive cycles of drought and subsequent recovery. Leaf water potential, gas exchange, chlorophyll fluorescence and several associated metabolic processes were studied in six plant species, including Pyracantha fortuneana (PF), Rosa cymosa (RC), Broussonetia papyrifera (BP), Cinnamomum bodinieri (CB), Platycarya longipes (PL) and Pteroceltis tatarinowii (PT) during three cycles of drought treatments at four different intensities. The four treatments were: well-watered, mild drought, moderate drought and severe drought, each followed by rewatering events. We found that limitations to CO(2) diffusion accounted for photosynthetic declines under mild and moderate drought treatments, while metabolic limitations dominated the response to severe drought. Repetition of drought did not intensify the impairment of photosynthetic metabolism regardless of drought intensity in the six species studied. Repetition of severe drought delayed the photosynthetic recoveries in PF, RC and CB after rewatering. Repetition of drought increased thermal dissipation in PF, CB and BP, as well as superoxide dismutase (EC 1.15.1.1) activity in RC and CB. Enhanced photosynthetic performance, measured as increased intrinsic water use efficiency, photosynthetic performance per unit of photosynthetic pigment, maintenance of high thermal dissipation and high ratios of carotenoids to chlorophylls, was observed during the rewatering periods. This enhanced photosynthetic performance allowed for the complete recovery of the six karst species from successive intermittent drought events.


Subject(s)
Droughts , Magnoliopsida/physiology , Broussonetia/physiology , Chlorophyll/metabolism , Cinnamomum/physiology , Photosynthesis/physiology , Plant Leaves/metabolism , Pyracantha/physiology , Rosa/physiology , Water/metabolism
4.
Ying Yong Sheng Tai Xue Bao ; 20(9): 2105-10, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-20030129

ABSTRACT

Five sites along the precipitation gradient (336-249 mm x a(-1)) from east to west in Ordos Plateau were selected to study the spatial distribution pattern of Artemisia ordosica population and its responses to the precipitation gradient by the methods of variance mean ratio, aggregative index, and point pattern analysis. The reduction of precipitation affected the spatial distribution pattern of A. ordosica population significantly. With decreasing precipitation gradient, the spatial pattern of A. ordosica population changed from uniform to random in small scale, and from random to clumpy in large scale, suggesting that in the ecological restoration of Ordos Plateau, a rational arrangement of A. ordosica should be made.


Subject(s)
Altitude , Artemisia/classification , Ecosystem , Rain , Soil/analysis , Artemisia/physiology , China , Population Dynamics , Water/analysis , Water Movements
5.
Ying Yong Sheng Tai Xue Bao ; 19(10): 2161-7, 2008 Oct.
Article in Chinese | MEDLINE | ID: mdl-19123350

ABSTRACT

Soil moisture is the key factor limiting the productivity of grassland in northern China ranging from arid to subhumid arid regions. In this paper, the seasonal and annual growth, foliage projective cover (FPC), evaporative coefficient (k), and net primary productivity (NPP) of 7 types of grasslands in North China were simulated by using a simple model based on well established ecological processes of water balance and climatic data collected at 460 sites over 40 years. The observed NPPs were used to validate the model, and the simulated NPPs were in high agreement with the observed NPPs. The simulated k, NPP, and FPC deceased from east to west in temperate grasslands, and decreased from southeast to northwest in Qinghai-Tibet Plateau, reflecting the moisture gradient in northern China. Alpine meadow had the highest k, NPP, and FPC in the 7 types of grasslands, alpine steppe had the second highest FPC but with a NPP similar to that of temperate steppe, and the three simulated parameters of temperate desert were the smallest. The simulated results suggested that the livestock density should be lower than 5.2, 2.3, 3.6, 2.1, 1.0, 0.6, and 0.2 sheep unit x hm(-2), while the coverage of rehabilitated vegetation should be about 93%, 79%, 56%, 50%, 44%, 38%, and 37% in alpine meadow, alpine steppe, temperate meadow steppe, temperate steppe, temperate desert steppe, temperate steppe desert, and temperate desert, respectively.


Subject(s)
Conservation of Natural Resources , Models, Theoretical , Poaceae/classification , Poaceae/growth & development , China , Ecosystem , Population Dynamics , Rain , Seasons
6.
J Environ Sci (China) ; 14(4): 568-76, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12491735

ABSTRACT

The characteristics of precipitation, temperature and their combination determine the special ecological environment pattern of Ordos Plateau. Analyzing its evolutionary trend attributes to understanding the succession process of the ecological environment of Ordos Plateau and has crucial instructional significance on the ecological restoration research being conducted in this region. Four time scales, arranging from ten days, one month, one season growing season contrasting to non-growing season) to one year were adopted to analyze the climate data which included nearly 30 years and were collected by eight weather stations on Ordos Plateau. The results indicated that the mean annual temperature and the mean monthly temperature of February, September and December, had increased significantly during the late 30 years. The annual precipitation did not show significant changes but its distribution pattern had changed obviously. The ratio of precipitation of major growing season (May-October) to annual precipitation had increased distinctively, and five counties' precipitation reached statistically significant level. And the ratio of precipitation of latter growing season (September) to one year decreased significantly while the ratio of non-growing season (November-next April) to one year changed insignificantly. The results showed that maybe the interaction of increased mean temperature and insignificant change of precipitation in non-growing season was one of the reasons why the desertification of the region was deteriorating in recent years. Using some factors closely relating to vegetation succession such as mean annual temperature, mean annual precipitation, distributive pattern of precipitation, mean temperature of the coldest month, mean temperature of the warmest month, precipitation of the warmest month, mean temperature of growing season, precipitation of growing season, potential evapotranspiration(PET) and radiative dryness index(RDI), to synthetically analyze the climate characteristics of Ordos Plateau. The regionalized Ordos Plateau to three synthetical climate types were recognized as follows: Type I, semi-humid and low evaporation(including Jungar Banner, Dongsheng City and Ejin Horo Banner), Type II, semi-arid, semi-humid and moderate evaporation(including Uxin Banner and Dalad Banner), Type III, arid and high evaporation(including Hanggin Banner, Otog Banner and Otog Qian Banner).


Subject(s)
Climate , Ecosystem , China , Environmental Monitoring , Rain , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...