Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(6): e202313273, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37906439

ABSTRACT

The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants. We report herein an unprecedented electrochemical strategy for alkene azidocyanation that is compatible with both alkyl and aryl alkenes. This is achieved by harnessing the finely-tuned anodic electron transfer and the strategic selection of copper/ligand complexes. The reactions of aryl alkenes were rendered enantioselective by employing a chiral ligand. Crucially, the mild conditions and well-regulated electrochemical process assure exceptional tolerance for various functional groups and substrate compatibility with both terminal and internal alkyl alkenes.

2.
J Am Chem Soc ; 144(27): 11980-11985, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35772000

ABSTRACT

The 1,2-diamine motif is prevalent in natural products, small-molecule pharmaceuticals, and catalysts for asymmetric synthesis. Transition metal catalyzed alkene diazidation has evolved to be an attractive strategy to access vicinal primary diamines but remains challenging, especially for practical applications, due to the restriction to a certain type of olefins, the frequent use of chemical oxidants, and the requirement for high loadings of metal catalysts (1 mol % or above). Herein we report a scalable Cu-electrocatalytic alkene diazidation reaction with 0.02 mol % (200 ppm) of copper(II) acetylacetonate as the precatalyst without exogenous ligands. In addition to its use of low catalyst loading, the electrocatalytic method is scalable, compatible with a broad range of functional groups, and applicable to the diazidation of α,ß-unsaturated carbonyl compounds and mono-, di-, tri-, and tetrasubstituted unactivated alkenes.


Subject(s)
Alkenes , Diamines , Alkenes/chemistry , Catalysis , Copper/chemistry , Diamines/chemistry , Ligands
3.
Nat Commun ; 12(1): 6629, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785664

ABSTRACT

The development of efficient and sustainable methods for carbon-phosphorus bond formation is of great importance due to the wide application of organophosphorus compounds in chemistry, material sciences and biology. Previous C-H phosphorylation reactions under nonelectrochemical or electrochemical conditions require directing groups, transition metal catalysts, or chemical oxidants and suffer from limited scope. Herein we disclose a catalyst- and external oxidant-free, electrochemical C-H phosphorylation reaction of arenes in continuous flow for the synthesis of aryl phosphorus compounds. The C-P bond is formed through the reaction of arenes with anodically generated P-radical cations, a class of reactive intermediates remained unexplored for synthesis despite intensive studies of P-radicals. The high reactivity of the P-radical cations coupled with the mild conditions of the electrosynthesis ensures not only efficient reactions of arenes of diverse electronic properties but also selective late-stage functionalization of complex natural products and bioactive compounds. The synthetic utility of the electrochemical method is further demonstrated by the continuous production of 55.0 grams of one of the phosphonate products.

4.
J Org Chem ; 86(22): 16001-16007, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34314192

ABSTRACT

Indole is prevalent in bioactive compounds and natural products. The development of efficient and sustainable methods to access this privileged structural scaffold has been a long-standing interest of synthetic chemists. Herein, we report an electrocatalytic method for the synthesis of indoles through dehydrogenative cyclization of 2-vinylanilides. The reactions employ an organic redox catalyst and do not require any external chemical oxidant, providing speedy and efficient access to 3-substituted and 2,3-disubstituted indoles.


Subject(s)
Biological Products , Indoles , Catalysis , Cyclization
SELECTION OF CITATIONS
SEARCH DETAIL
...