Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928100

ABSTRACT

Rich biological information in sweat provides great potential for health monitoring and management. However, due to the complexity of sweat, the development of environmentally friendly green electronic products is of great significance to the construction of ecological civilization. This study utilized a simple combination of polystyrene sulfonate sodium (PSS) and filter paper (FP) to prepare cellulose materials coated with conductive polymers, developing an electrochemical sensor based on the modified materials. The mechanical and electrochemical properties of the fabricated PSS/FP membrane were optimized by adjusting the feeding dosage of PSS. The realized PSS/FP composite containing 7% PSS displayed good conductivity (9.1 × 10-2 S/m), reducing electric resistance by 99.2% compared with the original FP membrane (6.7 × 10-4 S/m). The stable current of the membrane in simulated sweat under different pH environments is highly correlated with the pH values. Additionally, when the membrane is exposed to simulated sweat with varying ion concentrations, the current signal changes in real time with the concentration variations. The response time averages around 0.3 s.


Subject(s)
Cellulose , Electric Conductivity , Polystyrenes , Sweat , Sweat/chemistry , Cellulose/chemistry , Hydrogen-Ion Concentration , Polystyrenes/chemistry , Polymers/chemistry , Humans , Electrochemical Techniques/methods , Biosensing Techniques/methods
2.
Inorg Chem ; 63(24): 11478-11486, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38819949

ABSTRACT

In the preparation of carbon dots (CDs), precursors are crucial, and abundant precursors endow CDs with various structures and fluorescence characteristics. Furan (FU) and its derivatives are considered excellent carbonization materials due to their π conjugated structures and active functional groups, such as hydroxyl and aldehyde groups. Herein, we prepare FU-derivative-based CDs by a solvothermal method and investigate the influences of the precursor structure on the fluorescence characteristics. Surprisingly, CDs prepared from 5-hydroxymethylfurfural (HMF) with both aldehyde and hydroxyl groups exhibit red-shifted fluorescence characteristics in the solid state. We postulate that this solid-state fluorescence characteristic is due to the enhancement of supramolecular cross-linking fluorescence between CDs. The unique precursor structure leads to carboxyl groups on the surface of HMF-CDs that are conducive to the hydrogen bond formation. As the concentration of CDs increases, the hydrogen bonding effect increases, leading to a red-shift in the fluorescence wavelength. Therefore, basically full-color CDs/poly(vinyl alcohol) (PVA) phosphor-based light-emitting diodes can be achieved by controlling the degree of supramolecular cross-linking of CDs in PVA. This research provides a new approach for the preparation of solid-state luminescent CDs.

3.
Nanoscale Adv ; 6(8): 1997-2001, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38633051

ABSTRACT

Herein, F-doped CDs with bright red SSF were synthesized by a solvothermal method using trifluoroethanol as the solvent and m-hydroxybenzaldehyde as the carbon source. Strong F-F interactions are vital for inducing crystallization, and solid luminescence is achieved by blocking the nonradiative energy dissipation pathways of crystalline organizations.

4.
ACS Appl Mater Interfaces ; 16(7): 9182-9189, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38343193

ABSTRACT

Carbon dots (CDs) are new carbon nanomaterials, among which those prepared from biomass are popular due to their excellent optical properties and environmental friendliness. As representative natural phenolic compounds, tea polyphenols are ideal precursors with fluorescent aromatic rings and phenolic hydroxyl structures. Usually, polyphenolic precursors can only be used to produce blue or green fluorescent CDs, and fluorescence in long wavelength domains, such as orange or red, cannot be achieved. Herein, the high reactivity of the phenolic hydroxyl groups in tea polyphenols with o-phthalaldehyde was exploited to modulate the pH during the carbonation process, which led to redshifts of the fluorescence wavelengths. Different pH values during the reaction caused the precursors to take different reaction paths and form fluorescent groups exhibiting different conjugated structures, resulting in carbon dots providing different fluorescent colors. Finally, by utilizing the in situ hydrolysis of ethyl orthosilicate, the tea polyphenol-based carbon dots were embedded into a silica matrix, inducing phosphorescence of the carbon dots. This study provides a new approach for green preparation and application of natural polyphenolic CDs.

5.
Bioresour Technol ; 388: 129746, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689119

ABSTRACT

In this study, impregnation combined with KOH activation with different mixing methods was used to prepare magnetic biochar. The effects of synthetic method on biochar physicochemical properties and adsorption performance were explored. The results showed that treatment of a Fe-Zn oxide with KOH activation provided excellent adsorption properties with adsorption capacity of 458.90 mg/g due to well-developed microporous structure and rich-in O-containing functional groups as well as exposed oxidizing functional groups (Fe2O3 and FeOOH). Langmuir-Freundlich and pseudo-second-order models accurately fit phenol adsorption. Neutral conditions (pH = 6) and lower ionic strengths were beneficial to phenol removal. Additionally, the predominant adsorption processes were physisorption and chemisorption. Correlation analyses and characterization data confirmed that pore filling, π-π interactions and surface complexation were the dominant driving forces for phenol adsorption. This research provides an environmentally friendly method for utilizing agricultural wastes for the removal of a variety of pollutions from aquatic environment.

6.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513177

ABSTRACT

As the foremost category of carbon materials, carbon dots (CDs) have been extensively applied in many domains because of their special fluorescence features and outstanding biocompatibility. However, in early studies of fluorescent CDs, as the fluorescence wavelength of most CDs was restricted to the blue or green region and was excitation dependent, the application of CDs was limited. In this study, three representative CDs, fluorescing yellow, green, and blue, were synthesized under alkaline, neutral, and acidic circumstances, respectively, while using a hydrothermal method in which catechol and phthalaldehyde acted as carbon sources and methanol functioned as the reaction solvent. The carbon nuclei of the three fluorescent CDs all had comparable graphite structures. The diversity of photoluminescence (PL) emission from these three CDs was attributed mainly to the different sizes of the sp2 conjugated structures among them. Mixing synthesized CDs with epoxy resin, three colors (yellow, green, and blue) of LED using CIE coordinates (0.40, 0.44), (0.33, 0.46), and (0.21, 0.22), respectively, were successfully prepared.

7.
Environ Pollut ; 331(Pt 1): 121871, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37225081

ABSTRACT

In this study, a novel nitrogen-doped magnetic Fe-Ca codoped biochar for phenol removal was successfully fabricated via a hydrothermal and coactivation pyrolysis method. A series of adsorption process parameters (K2FeO4 to CaCO3 ratio, initial phenol concentration, pH value, adsorption time, adsorbent dosage and ion strength) and adsorption models (kinetic models, isotherms and thermodynamic models) were determined using batch experiments and various analysis techniques (XRD, BET, SEM-EDX, Raman spectroscopy, VSM, FTIR and XPS) to investigate the adsorption mechanism and metal-nitrogen-carbon interaction. The biochar with a ratio of Biochar: K2FeO4: CaCO3 = 3:1:1 exhibited superior properties for adsorption of phenol and had a maximum adsorption capacity of 211.73 mg/g at 298 K, C0 = 200 mg/L, pH = 6.0 and t = 480 min. These excellent adsorption properties were due to superior physicomechanical properties (a large specific surface area (610.53 m2/g) and pore volume (0.3950 cm3/g), a well-developed pore structure (hierarchical), a high graphitization degree (ID/IG = 2.02), the presence of O/N-rich functional groups and Fe-Ox,Ca-Ox, N-doping, as well as synergistic activation by K2FeO4 and CaCO3). The Freundlich and pseudo-second-order models effectively fit the adsorption data, indicating multilayer physicochemical adsorption. Pore filling and π-π interactions were the predominant mechanisms for phenol removal, and H-bonding interactions, Lewis-acid-base interactions, and metal complexation played an important role in enhancing phenol removal. A simple, feasible approach with application potential to organic contaminant/pollutant removal was developed in this study.


Subject(s)
Phenol , Water Pollutants, Chemical , Phenol/analysis , Nitrogen/analysis , Porosity , Water Pollutants, Chemical/analysis , Phenols/analysis , Charcoal/chemistry , Adsorption , Kinetics , Magnetic Phenomena
8.
Adv Sci (Weinh) ; 10(18): e2300543, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37085685

ABSTRACT

Reported in 2004, carbon dots (CDs) have been widely used in various fields due to their excellent optical properties. However, the mechanism of their fluorescence modulation is still a controversial issue, which also seriously affects the further development of carbon dots. In this paper, m-hydroxybenzaldehyde is used as a raw material to obtain multicolor luminescent CDs by pyrolysis under different reaction conditions, thereby revealing the forbidden band tuning and formation mechanism of CDs. Different acid-base conditions lead to different reaction paths of the precursors, forming molecular fluorophores with different conjugated structures, which aggregate to eventually form CDs and further enhance the photoluminescence of the system by inhibiting the movement of the fluorescent centers.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Fluorescence
9.
Int J Mol Sci ; 23(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36499058

ABSTRACT

Juice, as a liquid foodstuff, is subject to spoilage and damage due to complications during transport and storage. The appearance of intact outer packaging often makes spoilage and damage difficult to detect. Therefore, it of particular importance to develop a fast, real-time material to evaluate liquid foodstuffs. In this paper, starch films with pH response characteristics are successfully prepared by inorganic ion modification by utilizing whole starch and amylopectin as raw materials. The mechanical properties, stability properties, hydrophilic properties and pH electrical signal response indices of the films are analyzed and measured. The films exhibit good electrical conductivity values with 1.0 mL of ion addition (10 mmol/L), causing the composite film to respond sensitively to solutions with varying pH values. In the test of spoiled orange juice, the full-component corn starch (CS) film has more sensitive resistance and current responses, which is more conducive for applications in the quality monitoring of juice. The results indicate that modified starch films can potentially be applied in the real-time monitoring of the safety of liquid foodstuffs.


Subject(s)
Fruit and Vegetable Juices , Starch , Starch/chemistry , Amylopectin , Food Packaging/methods , Food
10.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499539

ABSTRACT

The pyrolysis of biomass is an efficient means of utilizing biomass resources. Biomass can be converted into various high-performance chemicals and functional materials through pyrolysis. However, current pyrolysis technologies suffer from low conversion rates and single products, so the preparation of nitrogen compounds with high economic value remains a challenge. The walnut shell was soaked in three nitrogen-containing compound solutions before carbonization to produce high-value-added nitrogen-containing chemicals (with a nitrogen content of 59.09%) and biochar for the adsorption of polycyclic aromatic hydrocarbons (PAHs). According to biochar analysis, biochar has a porous structure with a specific surface area of 1161.30 m2/g and a high level of rocky desertification. The surface forms a dense pyrrole structure, and the structure produces π-π interactions with naphthalene molecules, exhibiting excellent naphthalene adsorption with a maximum capacity of 214.98 mg/g. This study provides an efficient, rapid, and environmentally friendly method for producing nitrogen-containing chemicals with high-added value and biochar.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/chemistry , Nitrogen , Pyrolysis , Charcoal/chemistry , Adsorption
11.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36232382

ABSTRACT

Carbon dots (CDs), as a new type of photoluminescent nanomaterial, have attracted extensive attention in various fields because of their unique luminescence properties. However, CDs will exhibit fluorescence quenching in the solid state or aggregate state, which limits their application. In this paper, a unique strategy is proposed to regulate solutions to achieve multicolour fluorescence of CDs in the solid state. We report the successful preparation of orange, green and blue solid fluorescent CDs using citric acid, urea and phenylethylamine as precursors and methanol, ethanol and water as solvents, respectively. The solid-state fluorescence of CDs may be caused by the linkage of the phenylethyl structure to the surface of CDs during formation, which effectively disperses the CDs and prevents π-π interactions between graphitized nuclei. Meanwhile, multicolour solid fluorescent CDs are realized by adjusting the solvent in the preparation process. Based on the excellent fluorescence properties of CDs, orange, green and blue light-emitting diodes (LEDs) are prepared. A white LED (WLED) can be obtained by mixing the three colours of solid fluorescent CDs, which shows the application potential of CDs in display lighting equipment.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Citric Acid , Ethanol , Fluorescent Dyes/chemistry , Methanol , Phenethylamines , Quantum Dots/chemistry , Solvents/chemistry , Urea , Water
12.
Nanomaterials (Basel) ; 12(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36080100

ABSTRACT

Biomass carbon dots (CDs) have the characteristics of being green, nontoxic, inexpensive, and simple to prepare, and they can be used in luminescence-related fields. In this study, red, green, and blue luminescent CDs were synthesised by a simple hydrothermal method under alkaline, neutral, and acidic conditions using TA as carbon source and o-phthalaldehyde as blend. The unique optical properties of these CDs are due to the differences in their degrees of conjugation, which can be controlled by the pH value of the reaction system. These three kinds of biomass CDs have good applications in light-emitting diodes (LEDs). By mixing biomass CDs with epoxy resin, warm, and cold white LEDs with Commission Internationale de l'Elcairage (CIE) coordinates (0.35, 0.36) were successfully constructed on extremely stable multicolour CDs. This study shows that these biomass CDs are a promising material for white LED lighting.

13.
Front Chem ; 10: 940398, 2022.
Article in English | MEDLINE | ID: mdl-35873043

ABSTRACT

Biomass carbon dots (BCDs) have the advantages of being nontoxic, low cost and simple to prepare, have excellent optical properties, good biocompatibility and stability, and therefore have broad application prospects in areas such as heavy metal ion detection and optoelectronic devices. Herein, a simple, green, solvent-free method of preparing BCDs was developed. CDs with certain fluorescence properties were prepared by a solvent-free pyrolysis method at different temperatures using two abundant components (cellulose and lignin) of biomass resources as carbon sources. Both the cellulose CDs prepared at 300°C and the lignin CDs prepared at 350°C exhibited high quantum yields of 11.7% and 23.4%, respectively, a result that was mainly due to the high degree of graphitization. The analysis and results demonstrated the selectivity of CDs for the detection of various metal ion solutions. In particular, CDs are sensitive to Fe3+ and can be used as a fluorescent sensor for the detection of Fe3+, providing a more efficient, sustainable alternative for metal ion detection.

14.
RSC Adv ; 12(29): 18779-18783, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35873327

ABSTRACT

A simple, green, and solvent-free pyrolysis method for the preparation of starch-based carbon dots (CDs) was developed. The CDs prepared at 300 °C exhibited a highest quantum yield of 21.0%, which was mainly due to the high degree of graphitisation of the CDs. The CDs were selective for the detection of Ru3+ ion solutions.

15.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743129

ABSTRACT

Carbon dots (CDs) are widely used nanomaterials that not only exhibit good biocompatibility and photostability, but also benefit from a simple preparation process and easy functionalization, making them promising for broad applications in the fields of heavy metal ion detection and optoelectronic devices. Based on the excellent optical properties of CDs and the current situation of increasing energy shortages, this paper selects the natural polyphenolic compound tannic acid (TA) found in biomass materials as the carbon source and innovatively adopts a simple and convenient solvent-free pyrolysis method without auxiliary reagents or solvents. The CDs with good water solubility and certain fluorescence properties were directly prepared under the condition of high temperature, and the obtained CDs exhibited blue fluorescence, and a high QY of 35.4% was obtained at 300 °C. The analysis and results demonstrate the selectivity of these CDs for the detection of various metal ion solutions. In particular, these CDs are sensitive to Ni2+ and can be used as fluorescent sensors for the efficient and sustainable detection of Ni2+, whereas previous sensors were often specific to Fe3+ and Hg2+. Thus, a new sensing technique has been developed for the detection of Ni2+ to achieve more sensitive and rapid detection.


Subject(s)
Carbon , Quantum Dots , Fluorescent Dyes , Solvents , Spectrometry, Fluorescence/methods , Tannins
16.
Materials (Basel) ; 14(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443238

ABSTRACT

Carbon dots (CDs), as the most important type of carbon materials, have been widely used in many fields because of their unique fluorescence characteristics and excellent properties of biocompatibility. In previous studies, the fluorescence of CDs was mainly concentrated in the blue and green, whereas the red fluorescence was relatively less. Herein, we prepared efficient red-emitting CDs from 1,4-diaminonaphthalene using solvothermal methods. We discussed the effects of different solvothermal solvents on CDs. The results show that CDs prepared with octane and acetone as reaction media have the best fluorescence properties. The CDs dispersed in different organic solvents exhibited tunable emission across a wide spectrum from 427 nm to 679 nm. We further demonstrated the application of red light-emitting diode (LED) optoelectronics and fluorescence detection of Fe3+ in aqueous solution.

17.
Front Bioeng Biotechnol ; 9: 638546, 2021.
Article in English | MEDLINE | ID: mdl-33604332

ABSTRACT

Carboxymethyl cellulose, a hydrophobic derivative from cellulose that can be prepared from different biomass, has been widely applied in food, medicine, chemical, and other industries. In this work, carboxymethyl cellulose was used as the additive to improve the hydrophobicity and strength of carboxylated starch film, which is prepared from starch catalyzed by bio-α-amylase. This study investigated the effects of different bio-α-amylase dosages (starch 0.5%, starch 1%) and different activation times (10, 30 min) on starch to prepare the carboxylated starch. The effects of different carboxymethyl cellulose content on the carboxylated starch film were investigated by analysis viscosity, fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, x-ray powder diffraction, scanning electron microscope, and contact angle. The results showed that preparing carboxylated starch using activated starch increased the carboxyl content, which could improve the effectiveness of the activated enzyme compared to prolonging the activation time. The carboxyl starch prepared by enzyme catalysis had a lower gelatinization temperature, and enzyme activation destroyed the crystallization area of the starch, thus facilitating the carboxylation reaction. The addition of 15% carboxymethyl cellulose improved the mechanical properties of the prepared film with maximum tensile strength of 44.8 MPa. Carboxymethyl cellulose effectively improved the hydrophobicity of the starch film with the addition amount of 10-30%, while hydrophobic property was stable at 66.8° when the addition amount was exceeded to 35%. In this work, it can be found that carboxymethyl cellulose improve the mechanical and hydrophobic properties of starch film, laying the foundation for the application of carboxylated starch materials.

18.
Nanoscale Adv ; 4(1): 14-18, 2021 Dec 21.
Article in English | MEDLINE | ID: mdl-36132954

ABSTRACT

Red, green, and blue CDs were successfully prepared by a solvothermal method using gallic acid as the raw material. The distinct optical features of these CDs are based on the differences in the size of their sp2-domains, which can be governed by reaction solvents.

19.
RSC Adv ; 11(60): 38033-38039, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498082

ABSTRACT

Acidic reagents play an important role in the preparation of carbon dots (CDs). Therefore, we prepared efficient green fluorescent CDs by potassium bisulfate, acetic acid and hydrochloric acid catalysis and discussed why the acid catalyst induced a fluorescence redshift and improved the quantum yield of the CDs. Furthermore, the concentration-dependent photoluminescence behaviour of the CDs was characterized. CD/PVA composites emitting green to yellow light were obtained by exploiting the fluorescence tunability of CDs. Based on different light-emitting diode substrates, green, yellow and white light-emitting diodes with excellent performance were prepared.

20.
RSC Adv ; 11(43): 26915-26919, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-35480021

ABSTRACT

Carbon dots (CDs), as the most important type of carbon-based material, have been widely used in many fields because of their excellent properties. In particular, multicolor fluorescent CDs with high photoluminescence quantum yield are the focus of active research. Herein, red, green and blue CDs (RGB CDs) were successfully synthesized by a solvothermal method from o-phenylenediamine under different reaction conditions. The RGB-CDs have stable optical properties and significant photoluminescence characteristics. Structural and elemental analyses propose a conjugated structure and the surface state of the CDs as the main causes for the different color emission of RGB-CDs. In addition, a white fluorescent CD solution was prepared by mixing these multicolor fluorescent CDs in appropriate proportions.

SELECTION OF CITATIONS
SEARCH DETAIL
...