Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 42(2): 199-208, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32759963

ABSTRACT

Mitophagy is a selective form of autophagy involving the removal of damaged mitochondria via the autophagy-lysosome pathway. PINK1-Parkin-mediated mitophagy is one of the most important mechanisms in cardiovascular disease, cerebral ischemia-reperfusion (I/R) injury, and neurodegenerative diseases. In this study we conducted an image-based screening in YFP-Parkin HeLa cells to discover new mitophagy regulators from natural xanthone compounds. We found that garciesculenxanthone B (GeB), a new xanthone compound from Garcinia esculenta, induced the formation of YFP-Parkin puncta, a well known mitophagy marker. Furthermore, treatment with GeB dose-dependently promoted the degradation of mitochondrial proteins Tom20, Tim23, and MFN1 in YFP-Parkin HeLa cells and SH-SY5Y cells. We revealed that GeB stabilized PINK1 and triggered Parkin translocation to the impaired mitochondria to induce mitophagy, and these effects were abolished by knockdown of PINK1. Finally, in vivo experiments demonstrated that GeB partially rescued ischemia-reperfusion-induced brain injury in mice. Taken together, our findings demonstrate that the natural compound GeB can promote the PINK1-Parkin-mediated mitophagy pathway, which may be implicated in protection against I/R brain injury.


Subject(s)
Brain Ischemia/prevention & control , Garcinia/chemistry , Reperfusion Injury/prevention & control , Xanthones/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Gene Knockdown Techniques , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitophagy/drug effects , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Xanthones/administration & dosage , Xanthones/isolation & purification
2.
Acta Pharmacol Sin ; 40(7): 929-937, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30333555

ABSTRACT

Lysosomes are the terminal organelles of the autophagic-endocytic pathway and play a key role in the degradation of autophagic contents. We previously reported that a natural compound oblongifolin C (OC) increased the number of autophagosomes and impaired the degradation of P62, most likely via suppression of lysosomal function and blockage of autophagosome-lysosome fusion. However, the precise mechanisms of how OC inhibits the lysosome-autophagy pathway remain unclear. In the present study, we investigated the effect of OC on transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, lysosomal function and autophagy. We showed that treatment with OC (15 µM) markedly enhanced the nuclear translocation of TFEB in HeLa cells, concomitantly reduced the interaction of TFEB with 14-3-3 proteins. We further demonstrated that OC caused significant inhibition of mTORC1 along with TFEB nuclear translocation, and OC-mediated TFEB nuclear translocation was dependent on mTORC1 suppression. Intriguingly, this increased nuclear TFEB was accompanied by reduced TFEB luciferase activity, increased lysosomal pH and impaired cathepsin enzyme activities. In HeLa cells, treatment with OC (7.5 µM) resulted in about 30% of cell death, whereas treatment with hydroxycitrate, a caloric restriction mimetic (20 µM) did not affect the cell viability. However, cotreatment with OC and hydroxycitrate caused significantly great cytotoxicity (>50%). Taken together, these results demonstrate that inhibition of lysosome function is mediated by OC, despite evident TFEB nuclear translocation.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , Protein Transport/drug effects , Terpenes/pharmacology , Animals , Antineoplastic Agents/pharmacology , Autophagosomes/metabolism , Autophagy/drug effects , Cell Nucleus/metabolism , Citrates/pharmacology , Fruit/chemistry , Garcinia/chemistry , HeLa Cells , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Terpenes/isolation & purification
3.
Molecules ; 21(10)2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27754347

ABSTRACT

Nujiangexathone A (NJXA), a novel compound derived from Garcinia nujiangensis, has been demonstrated to inhibit the proliferation of several human cancer cell lines. This study is the first to demonstrate the apoptosis inductive activities of NJXA and the possible underlying mechanisms. Our results demonstrated that NJXA inhibited colony formation by HeLa and SiHa cells in a dose-dependent manner. An Annexin V-FITC/PI staining assay showed that NJXA strongly triggered apoptosis in a dose-dependent manner. Western blotting analyses showed that NJXA induced the caspase-dependent apoptosis of HeLa and SiHa cells by triggering a series of events, including changes in the levels of Bcl-2 family proteins, cytochrome c release, caspase-3 activation, and chromosome fragmentation. Furthermore, we demonstrated that NJXA induced cell apoptosis by activating the reactive oxygen species (ROS)-mediated JNK signaling pathway. Consistent with this finding, a ROS scavenger, N-acetyl-l-cysteine (NAC, 10 mM), hindered NJXA-induced apoptosis and attenuated the sensitivity of HeLa and SiHa cells to NJXA. In vivo results further confirmed that the tumor inhibitory effect of NJXA was partially through the induction of apoptosis. Taken together, our results demonstrated that NJXA induced the apoptosis of HeLa and SiHa cells through the ROS/JNK signaling pathway, indicating that NJXA could be important candidate for the clinical treatment of cervical cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Caspases/metabolism , Garcinia/chemistry , Plant Extracts/administration & dosage , Uterine Cervical Neoplasms/drug therapy , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , MAP Kinase Signaling System/drug effects , Mice , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Uterine Cervical Neoplasms/metabolism , Xenograft Model Antitumor Assays
4.
J Neurophysiol ; 97(3): 2067-74, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17202235

ABSTRACT

The mitogen-activated protein kinase (MAPK) signal transduction pathways have been implicated in underlying mechanisms of synaptic plasticity and learning. However, the differential roles of the MAPK family members extracellular signal-regulated kinase (ERK) and p38 in learning remain to be clarified. Here, an in vitro model of classical conditioning was examined to assess the roles of ERK and p38 MAPK in this form of learning. Previous studies showed that NMDA-mediated trafficking of synaptic glutamate receptor 4 (GluR4)-containing AMPA receptors (AMPARs) underlies conditioning in this preparation and that this is accomplished through GluR4 interactions with the immediate-early gene protein Arc and the actin cytoskeleton. Here, it is shown that attenuation of conditioned responses (CRs) by ERK and p38 MAPK antagonists is associated with significantly reduced synaptic localization of GluR4 subunits. Western blotting reveals that p38 MAPK significantly increases its activation levels during late stages of conditioning during CR expression. In contrast, ERK MAPK activation is enhanced in early conditioning during CR acquisition. The results suggest that MAPKs have a central role in the synaptic delivery of GluR4-containing AMPARs during in vitro classical conditioning.


Subject(s)
Brain Stem/cytology , Conditioning, Classical/physiology , Mitogen-Activated Protein Kinase Kinases/physiology , Receptors, AMPA/metabolism , Signal Transduction/physiology , Animals , Brain Stem/physiology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/physiology , Gene Expression Regulation/radiation effects , Immunohistochemistry , In Vitro Techniques , Models, Animal , Protein Transport/drug effects , Protein Transport/physiology , Signal Transduction/drug effects , Turtles
5.
Sheng Li Xue Bao ; 57(3): 289-94, 2005 Jun 25.
Article in English | MEDLINE | ID: mdl-15968422

ABSTRACT

It has been reported that lysophosphatidic acid (LPA) at its lower concentrations prevents apoptosis induced by serum-deprivation in cultured cortical neurons when LPA is added into the cultural medium with serum withdrawal. The present study was designed to investigate whether LPA could also block the apoptosis induced by beta-amyloid peptide fragment 31-35 (AbetaP31-35) in cultured cortical neurons by using techniques of DNA fragmentation electrophoresis, HO33342 staining, and TUNEL examinations. The results showed that pretreatment of LPA suppressed the AbetaP31-35-induced apoptosis only when LPA was applied to the cultured neurons with lower concentrations (1-10 micromol/L) and especially, with a preceding time of 12-24 h before the AbetaP31-35 exposure. These facts imply that LPA also acts as a neuroprotective factor against AbetaP31-35-induced apoptosis, though the mechanism underlying the protective action in this case may be more complex than that involved in the serum deprivation-induced apoptosis.


Subject(s)
Amyloid beta-Peptides , Apoptosis/drug effects , Cerebral Cortex/pathology , Lysophospholipids/pharmacology , Neuroprotective Agents/pharmacology , Peptide Fragments , Amyloid beta-Peptides/antagonists & inhibitors , Animals , Animals, Newborn , Apoptosis/physiology , Cells, Cultured , Mice , Neurons/pathology , Peptide Fragments/antagonists & inhibitors
6.
Sheng Li Xue Bao ; 56(2): 163-71, 2004 Apr 25.
Article in English | MEDLINE | ID: mdl-15127125

ABSTRACT

The effect of lysophosphatidic acid (LPA), with a wide range of its different concentrations, upon cultured mouse cortical neurons was assessed by electrophoresis of DNA fragments, HO33342 and TUNEL stainings, and also by ultrastructural examination at times. The results showed that administration of LPA at lower concentrations (0.1-30 micromol/L) dose-dependently protected cortical neurons from apoptosis that was induced by deprivation of serum from the cultural medium, while 50 micromol/L or higher concentrations of LPA failed to show this effect; and moreover, the concentrations higher than 50 micromol/L induced apoptosis in neurons cultured in serum-containing complete medium. These results suggest that a moderate concentration of LPA may play as a survival factor in apoptotic cortical neurons, while an excessive level of LPA induces apoptosis in neurons cultured in complete medium.


Subject(s)
Apoptosis/drug effects , Cerebral Cortex/cytology , Lysophospholipids/pharmacology , Animals , Animals, Newborn , Cell Survival/drug effects , Cells, Cultured , Culture Media, Serum-Free , Mice , Neurons/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...