Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 40(7): 3169-3178, 2019 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-31854715

ABSTRACT

A completely autotrophic nitrogen removal over nitrite (CANON) reactor was established by seeding ordinary activated sludge with reject water as the influent at (30±3)℃ from a sewage treatment plant in Qingdao. To solve bacterial loss and optimize reactor performance, a suspension of biological carriers was added to the CANON reactor. The result showed that the reactor was successfully started 130 days later. The total nitrogen removal load was up to 0.03 kg·(m3·d)-1, and the average variation ratio of nitrate and ammonia (RNaA) was 0.09, which was close to theoretical value 0.11. The CANON active sludge reactor ran for 300 days. During the stable operation period, the total nitrogen removal rate was stable at 0.20 kg·(m3·d)-1. Red granular sludge was mixed with the effluent of the system, and the particle size of granular sludge was between 1 and 3 mm. The suspension carriers were added to the CANON reactor with a filling rate of 30%. The fillers added to the moving bed biofilm reactor (MBBR) were mature fillers in the nitrifying reactor of the laboratory. The accumulation rate of nitrification was greater than 95%, and the ammonia-oxidized surface load reached 2.0 g·(m2·d)-1. After 30 days of operation and culturing, the system was successfully converted to a pure membrane system, and the biofilm on the surface of the carrier turned pale red. The total nitrogen removal load was up to 0.17 kg·(m3·d)-1. The average RNaA was 0.14, which was slightly higher than the theoretical value of 0.11. This suggested that the CANON sludge adapted to the environment in the MBBR and began to enter a stable stage. The CANON-MBBR ran for 200 days. During the stable operation period, the total nitrogen removal rate was stable at 1.15 kg·(m3·d)-1. The biofilm was bright brick red with a thickness of 150-250 µm. MLSS and MLVSS on the carriers were approximately 10200 mg·m-2 and 9000 mg·m-2, respectively, and the total biomass in the system was approximately 1.5 kg. Through high-throughput sequencing, AOB and AnAOB were found to be the dominant bacteria species on the suspension carrier, with a relative abundance of 26.24% and 30.08%, respectively, and nitrate oxidizing bacteria were successfully suppressed. The above results showed that CANON-MBBR with high-density polyethylene filler as the suspension carrier had good nitrogen-removal efficiency and was conducive to the stable operation of the autotrophic nitrogen removal process.

2.
J Vet Sci ; 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30173492

ABSTRACT

Ahead of Print article withdrawn by publisher.

3.
Bioelectromagnetics ; 37(4): 244-55, 2016 May.
Article in English | MEDLINE | ID: mdl-27061713

ABSTRACT

Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity.


Subject(s)
Central Nervous System/physiology , Magnetic Fields , Nerve Regeneration , Planarians/physiology , Rotation , Animals , Biomarkers/metabolism , Gene Expression Regulation , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...