Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960278

ABSTRACT

INTRODUCTION: High palmitic acid (PA) levels trigger metainflammation, facilitating the onset and progression of chronic metabolic diseases. Recently, exosomes were identified as new inflammation mediators. However, the mechanism by which macrophage exosomes mediate PA-induced inflammation remains unclear. OBJECTIVES: To explore how PA induces metainflammation through macrophage exosomes. METHODS: Exosomes secreted by RAW264.7 mouse macrophages stimulated with PA (ExosPA) or not (Exos) were prepared by ultracentrifugation. The differential miRNAs between ExosPA and Exos were identified by high-throughput sequencing, and their targeted mRNAs and proteins were bioinformatically analyzed and verified by qPCR and western blot. Mouse macrophages and metabolic cells (AML-12 hepatocytes, C2C12 myocytes or 3T3-L1 adipocytes) were treated with ExosPA or Exos. The verified miRNAs and its targeted molecules related to inflammation were analyzed in recipient cells. Furthers, exosomes were prepared from primary peritoneal macrophages isolated from AIN93G diet-fed (Control PM-Exos) or HPD-fed (PA PM-Exos) mice. Control or PA PM-Exos were then tail vein injected (30 µg) into mice (n = 10), once a week for 2 weeks. The verified miRNA and its targets in blood, blood exosomes, and metabolic tissues were detected. Finally, measured the levels of miRNA, inflammatory factors, and fatty acids in the blood of 20 obese/overweight individuals and 20 healthy individuals. RESULTS: ExoPA activate NF-κB signaling and enhance inflammatory enzyme/cytokine production in macrophages and metabolic cells. ExoPA enrich miR-3064-5p and target to inhibit IκBα as verified by exosome inhibitors and miR-3064-5p mimics and inhibitors. HPD elevates exosomal miR-3064-5p, macrophage exosomal miR-3064-5p, and inflammatory cytokine levels in mice circulation. PA PM-Exos from HPD-fed mice triggered inflammation in the circulation and metabolic tissues/organs of chow diet-fed mice. Overweight/obese individuals exhibit increased levels of circulating palmitoleic acid, exosomal miR-3064-5p, and high-sensitivity C-reactive proteins. CONCLUSIONS: Macrophage exosomes transferring miR-3064-5p to target IκBα and activate NF-κB signaling in metabolic cells is a mechanism of PA-induced metainflammation.

2.
Mol Nutr Food Res ; 67(16): e2300005, 2023 08.
Article in English | MEDLINE | ID: mdl-37357556

ABSTRACT

SCOPE: Exosomes, a novel type of bioactive component in human milk (HM), affect infant development, growth, and health. Recent studies indicate that HM exosomes and miRNAs relate to gestational diabetes mellitus (GDM). However, the miRNAs profiles and functionalities of HM exosomes from GDM parturient remain unclear. This study aims to compare the differential miRNAs in HM exosomes from GDM and healthy parturient, and investigate the HM exosomes bioactivities in regulating hepatocyte proliferation and insulin sensitivity. METHODS AND RESULTS: This study extracted HM exosomes from GDM (GDM-EXO) and healthy (NOR-EXO) parturient by ultracentrifugation, high-throughput sequenced and compared the exosomal miRNAs profiles, and explored the regulatory bioactivities on hepatocyte proliferation in HepG2 cells and Balb/c mice. As compared to NOR-EXO, GDM-EXO has similar morphology, size, concentration, and exosome-specific markers (CD9 and TSG101) expression. GDM-EXO and NOR-EXO specifically harbor 1299 and 8 miRNAs, respectively. Moreover, GDM-EXO had 176 upregulated and 47 downregulated miRNAs compared with NOR-EXO. Both GDM-EXO and NOR-EXO were absorbed in cultured HepG2 hepatocytes and mice liver. GDM-EXO inhibited hepatocytes proliferation by downregulating mammalian target of rapamycin (mTOR) possibly via exosomal miR-101-3p delivery. CONCLUSION: HM exosomes from GDM and healthy parturient exhibit differential miRNAs profiles and distinct regulatory bioactivity on hepatocyte proliferation.


Subject(s)
Diabetes, Gestational , Exosomes , MicroRNAs , Pregnancy , Female , Animals , Mice , Child , Humans , Diabetes, Gestational/genetics , Milk , Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Cell Proliferation , Mammals/metabolism
3.
Curr Issues Mol Biol ; 44(10): 4822-4837, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36286043

ABSTRACT

Atherosclerosis is a major risk factor for type 2 diabetes (T2D) mortality. We aim to investigate the changes in miR-21, miR-122, miR-33a and miR-3064-5p in circulation and the liver of ApoE-/- mice with streptozocin (STZ)-induced T2D. Twenty 5-week-old male ApoE-/- mice were randomly assigned to the control (n = 10) and T2D group (n = 10) and intraperitoneally injected with a citrate buffer and streptozotocin (STZ) (40 mg/kg BW) once a day for three consecutive days. The successfully STZ-induced T2D mice (n = 5) and control mice (n = 5) were then fed with a high-fat diet (HFD) for 34 weeks. Compared to the control mice, ApoE-/- mice with STZ-induced T2D had slower (p < 0.05) growth, increased (p < 0.05) total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), decreased (p < 0.05) high-density lipoprotein cholesterol (HDL-C) in serum, reduced (p < 0.05) TC and sterol regulatory element-binding protein-2 (Srebp-2), elevated (p < 0.05) ATP-binding-cassette-transporter-A1 (Abca1) in the liver, aggravated (p < 0.05) atherosclerotic lesions in the aorta, downregulated (p < 0.05) miR-21 and miR-33a, and upregulated (p < 0.05) miR-122 and miR-3064-5p in serum and the liver. In addition, the aortic lesions showed a positive correlation with miR-122 (r = 1.000, p = 0.001) and a negative correlation with miR-21 (r = −1.000, p = 0.001) in ApoE-/- mice with T2D. In conclusion, T2D-accelerated atherosclerosis correlates with a reduction in miR-21 and miR-33a and an elevation in miR-122 and miR-3064-5p in circulation and the liver of ApoE-/- mice.

4.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35890112

ABSTRACT

Recently, multiple studies have shown that chronic inflammation disturbs cholesterol homeostasis and promotes its accumulation in the liver. The underlying molecular mechanism remains to be revealed. The relationship between the toll-like receptor 4 (TLR4) inflammatory signaling pathway and cholesterol accumulation was investigated in HepG2 cells treated with lipopolysaccharide (LPS) or palmitic acid (PA) for different lengths of time. In addition, the effects of pretreatment with 20µmol/L ST2825 (MyD88 inhibitor) were also studied in LPS- or PA-treated HepG2 cells and myeloid differentiation factor 88 (MyD88)-overexpressing HEK293T cells. The intracellular total and free cholesterol levels were measured using a commercial kit and filipin staining, respectively. The expression levels of sterol regulatory element-binding protein-2 (SREBP-2) and components in the TLR4 signaling pathway were determined using Western blotting. The treatments with LPS for 12 h and with PA for 24 h significantly increased the contents of intracellular total and free cholesterol, as well as the expression levels of SREBP-2 and components in the TLR4 signaling pathway. The inhibition of MyD88 by ST2825 significantly decreased the cholesterol content and the expression levels of SREBP-2 and components of the TLR4/MyD88/NF-κB pathway in HepG2 cells, as well as MyD88-overexpressing HEK293T cells. These results indicated that LPS and PA treatments increase SREBP-2-mediated cholesterol accumulation via the activation of the TLR4/MyD88/NF-κB signaling pathway in HepG2 cells.

5.
NPJ Biofilms Microbiomes ; 7(1): 89, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930922

ABSTRACT

Vaginal microbiota-host interactions are linked to preterm birth (PTB), which continues to be the primary cause of global childhood mortality. Due to population size, the majority of PTB occurs in Asia, yet there have been few studies of the pregnancy vaginal microbiota in Asian populations. Here, we characterized the vaginal microbiome of 2689 pregnant Chinese women using metataxonomics and in a subset (n = 819), the relationship between vaginal microbiota composition, sialidase activity and leukocyte presence and pregnancy outcomes. Vaginal microbiota were most frequently dominated by Lactobacillus crispatus or L. iners, with the latter associated with vaginal leukocyte presence. Women with high sialidase activity were enriched for bacterial vaginosis-associated genera including Gardnerella, Atopobium and Prevotella. Vaginal microbiota composition, high sialidase activity and/or leukocyte presence was not associated with PTB risk suggesting underlying differences in the vaginal microbiota and/or host immune responses of Chinese women, possibly accounting for low PTB rates in this population.


Subject(s)
Microbiota , Premature Birth , Child , China/epidemiology , Female , Humans , Infant, Newborn , Neuraminidase , Pregnancy , Vagina
6.
Mol Nutr Food Res ; 65(14): e2100067, 2021 07.
Article in English | MEDLINE | ID: mdl-34047448

ABSTRACT

SCOPE: Nonalcoholic steatohepatitis (NASH) is a chronic progressive disease with complex pathogenesis of which the bile acids (BAs) and gut microbiota are involved. Soyasaponins (SS) exhibits many health-promoting effects including hepatoprotection, but its prevention against NASH is unclear. This study aims to investigate the preventive bioactivities of SS monomer (SS-A2 ) against NASH and further clarify its mechanism by targeting the BAs and gut microbiota. METHODS AND RESULTS: The methionine and choline deficient (MCD) diet-fed male C57BL/6 mice were intervened with obeticholic acid or SS-A2 for 16 weeks. Hepatic pathology is assessed by hematoxylin-eosin and Masson's trichrome staining. BAs in serum, liver, and colon are measured by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS). Gut microbiota in caecum are determined by 16S rDNA amplicon sequencing. In the MCD diet-induced NASH mice, SS-A2 significantly reduces hepatic steatosis, lobular inflammation, ballooning, nonalcoholic fatty liver disease activity score (NAS) scores, and fibrosis, decreases Erysipelotrichaceae (Faecalibaculum) and Lactobacillaceae (Lactobacillus) and increases Desulfovibrionaceae (Desulfovibrio). Moreover, SS-A2 reduces serum BAs accumulation and promotes fecal BAs excretion. SS-A2 changes the BAs profiles in both liver and serum and specifically increases the taurohyodeoxycholic acid (THDCA) level. Faecalibaculum is negatively correlated with serum THDCA. CONCLUSION: SS-A2 alleviates steatohepatitis possibly through regulating BAs and gut microbiota in the MCD diet-induced NASH mice.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Saponins/pharmacology , Animals , Chenodeoxycholic Acid/analogs & derivatives , Choline Deficiency , Colon/metabolism , Diet , Disease Models, Animal , Inflammation , Liver/drug effects , Liver/metabolism , Male , Methionine/deficiency , Mice , Mice, Inbred C57BL
7.
BMC Complement Med Ther ; 20(1): 167, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32493316

ABSTRACT

BACKGROUND: Previous studies indicate that soyasaponins may reduce inflammation via modulating toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling. However, its underlying mechanisms are still not fully understood. METHODS: Lipopolysaccharide (LPS)-challenged inflamed male ICR mice were intervened by intragastrical administration with 10 and 20 µmol/kg·BW of soyasaponin A1, A2 or I for 8 weeks. The serum inflammatory markers were determined by commercial kits and the expression of molecules in TLR4/MyD88 signaling pathway in liver by real-time PCR and western blotting. The recruitments of TLR4 and MyD88 into lipid rafts of live tissue lysates were detected by sucrose gradient ultracentrifugation and western blotting. LPS-stimulated RAW264.7 macrophages were treated with 10, 20 and 40 µmol/L of soyasaponin A1, A2 or I for 2 h. MyD88-overexpressed HEK293T cells were treated with 20 and 40 µmol/L of soyasaponins (A1, A2 or I) or 20 µmol/L of ST2825 (a MyD88 inhibitor) for 6 h. The expression of molecules in TLR4/MyD88 signaling pathway were determined by western blotting. Data were analyzed by using one way analysis of variance or t-test by SPSS 20.0 statistical software. RESULTS: Soyasaponins A1, A2 or I significantly reduced the levels of tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and nitric oxide (NO) in serum (p < 0.05), and decreased the mRNA levels of TNFα, IL-6, IL-1ß, cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) (p < 0.05), the protein levels of myeloid differentiation protein 2 (MD-2), TLR4, MyD88, toll-interleukin1 receptor domain containing adaptor protein (TIRAP), phosphorylated interleukin-1 receptor-associated kinase 4 (p-IRAK-4), phosphorylated interleukin-1 receptor-associated kinase 1 (p-IRAK-1) and TNF receptor associated factor 6 (TRAF6) (p < 0.05), and the recruitments of TLR4 and MyD88 into lipid rafts in liver (p < 0.05). In LPS-stimulated macrophages, soyasaponins A2 or I significantly decreased MyD88 (p < 0.05), soyasaponins A1, A2 or I reduced p-IRAK-4 and p-IRAK-1 (p < 0.05), and soyasaponin I decreased TRAF6 (p < 0.05). In MyD88-overexpressed HEK293T cells, soyasaponins (A1, A2 or I) and ST2825 significantly decreased MyD88 and TRAF6 (p < 0.05). CONCLUSION: Soyasaponins can reduce inflammation by downregulating MyD88 expression and suppressing the recruitments of TLR4 and MyD88 into lipid rafts. This study provides novel understanding about the anti-inflammatory mechanism of soyasaponins.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Myeloid Differentiation Factor 88/metabolism , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Toll-Like Receptor 4/metabolism , Animals , Disease Models, Animal , Down-Regulation , HEK293 Cells , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred ICR , Oleanolic Acid/pharmacology
8.
Food Funct ; 11(1): 253-269, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31956875

ABSTRACT

Atherosclerosis is a chronic inflammatory disease causing coronary heart attacks and strokes. Soyasaponins (SS), the phytochemicals naturally existing in soybeans and their products, have been shown to reduce hypercholesterolemia and inflammation, which are intimately related to the genesis and development of atherosclerosis. However, the anti-atherosclerotic functionality of soyasaponins remains unknown. The aim of this study was to investigate the effects of the supplementation of two types of soyasaponin monomers (A1 and A2) on atherosclerotic plaque formation, serum lipid profiles, and inflammation in ApoE gene knockout (ApoE-/-) mice. Sixty 5-week-old ApoE-/- male mice were fed with a high-fat diet (HFD) and intervened by SSA1 and SSA2 (10 and 20 µmol per kg BW, respectively) or simvastatin (10 µmol per kg BW) for 24 weeks. The atherosclerotic lesions in the aorta, aortic root, and innominate artery, lipid profile and inflammatory markers in serum, and TLR4/MyD88/NF-κB signaling in arterial tissues were determined. SSA1 and SSA2 decreased the plaque ratio in the aortic root and innominate artery but not in the entire aorta. In serum, SSA1 reduced TG, TC, and LDL-C but increased HDL-C; SSA2 decreased TC, TG, and LDL-C but did not affect HDL-C. Meanwhile, SSA1 increased TG, SSA2 increased TC, and both of them increased bile acids in the feces. SSA1 and SSA2 lowered TNF-α, MCP-1, and hs-crp in serum. Furthermore, SSA1 and SSA2 reduced the TLR4 and MyD88 expressions in the aorta and innominate artery and inhibited NF-κB p65 and IκBα phosphorylation in the aorta. These results suggest that SSA1 and SSA2 exert anti-atherosclerotic functionalities by decreasing hypercholesterolemia and inflammation in HFD-fed ApoE-/- mice.


Subject(s)
Glycine max/chemistry , Hypercholesterolemia/drug therapy , Inflammation/drug therapy , Phytochemicals/therapeutic use , Plaque, Atherosclerotic/blood , Saponins/pharmacology , Animals , Aorta , Atherosclerosis/drug therapy , Diet, High-Fat , Lipids/blood , Male , Mice , Mice, Knockout, ApoE , NF-KappaB Inhibitor alpha/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Transcription Factor RelA/metabolism
9.
Chemosphere ; 244: 125496, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31812062

ABSTRACT

The gene encoding the tumor suppressor, phosphatase and tensin homolog (PTEN), located on chromosome 10, is frequently expressed at low levels in various tumors, resulting in the stimulation of cell proliferation and migration. However, the role of exosomal PTEN in cell-cell communication during the progress of benzene-induced carcinogenesis remains unclear. The goal of this study was to explore whether exosomes derived from normal human bronchial epithelial cells (16HBE) could transmit PTEN to hydroquinone-transformed malignant recipient cells (16HBE-t) and its possible effects on cell proliferation and migration. Consistent with PTEN expression being down-regulated in transformed cells, we found that its expression was significantly decreased in 16HBE-t relative to 16HBE cells and that purified exosomes secreted by 16HBE, up-regulated PTEN levels in recipient 16HBE-t cells. Thus, down-regulating their proliferation and migration. Further, when exosomes derived from 16HBE cells that had been treated with the PTEN inhibitor SF1670, were incubated with recipient 16HBE-t cells, they exhibited decreased PTEN levels, with a corresponding increase in their proliferation and migration. In conclusion, our study demonstrates that exosomes derived from 16HBE cells can down-regulate proliferation and migration of recipient 16HBE-t cells via transferring PTEN.


Subject(s)
Cell Proliferation/physiology , Exosomes/metabolism , PTEN Phosphohydrolase/metabolism , Bronchi/drug effects , Cell Line , Down-Regulation , Epithelial Cells/drug effects , Humans , Hydroquinones/toxicity , MicroRNAs/genetics , Transcriptional Activation , Up-Regulation
10.
Microbiome ; 6(1): 172, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30249275

ABSTRACT

BACKGROUND: The metabolic syndrome (MetS) epidemic is associated with economic development, lifestyle transition and dysbiosis of gut microbiota, but these associations are rarely studied at the population scale. Here, we utilised the Guangdong Gut Microbiome Project (GGMP), the largest Eastern population-based gut microbiome dataset covering individuals with different economic statuses, to investigate the relationships between the gut microbiome and host physiology, diet, geography, physical activity and socioeconomic status. RESULTS: At the population level, 529 OTUs were significantly associated with MetS. OTUs from Proteobacteria and Firmicutes (other than Ruminococcaceae) were mainly positively associated with MetS, whereas those from Bacteroidetes and Ruminococcaceae were negatively associated with MetS. Two hundred fourteen OTUs were significantly associated with host economic status (140 positive and 74 negative associations), and 157 of these OTUs were also MetS associated. A microbial MetS index was formulated to represent the overall gut dysbiosis of MetS. The values of this index were significantly higher in MetS subjects regardless of their economic status or geographical location. The index values did not increase with increasing personal economic status, although the prevalence of MetS was significantly higher in people of higher economic status. With increased economic status, the study population tended to consume more fruits and vegetables and fewer grains, whereas meat consumption was unchanged. Sedentary time was significantly and positively associated with higher economic status. The MetS index showed an additive effect with sedentary lifestyle, as the prevalence of MetS in individuals with high MetS index values and unhealthy lifestyles was significantly higher than that in the rest of the population. CONCLUSIONS: The gut microbiome is associated with MetS and economic status. A prolonged sedentary lifestyle, rather than Westernised dietary patterns, was the most notable lifestyle change in our Eastern population along with economic development. Moreover, gut dysbiosis and a Western lifestyle had an additive effect on increasing MetS prevalence.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Metabolic Syndrome/economics , Metabolic Syndrome/microbiology , Adult , Aged , Bacteria/classification , Bacteria/genetics , Economic Status , Feces/microbiology , Female , Humans , Male , Metabolic Syndrome/metabolism , Middle Aged , Phylogeny
11.
Nat Med ; 24(12): 1940, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30250144

ABSTRACT

In the version of this article originally published, in the sentence "Applying the same approach to obesity (Fig. 2b), MetS (Fig. 2c) and fatty liver (Fig. 2d) yielded similar results," two figure panels were cited incorrectly. The data for obesity are in Fig. 2c, and the data for MetS are in Fig. 2b. The sentence has been updated with the correct citations in the print, PDF and HTML versions of the article.

12.
Nat Med ; 24(10): 1532-1535, 2018 10.
Article in English | MEDLINE | ID: mdl-30150716

ABSTRACT

Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.


Subject(s)
Gastrointestinal Microbiome/genetics , Host-Pathogen Interactions/genetics , Metabolic Diseases/microbiology , Phylogeography , China/epidemiology , Female , Humans , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Metabolic Diseases/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...