Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 157: 103964, 2023 06.
Article in English | MEDLINE | ID: mdl-37230333

ABSTRACT

Metamorphosis is one of the most important physiological processes in insects, which is coordinated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Ecdysone receptor (EcR) is a steroid receptor (SR), which usually presents in cytoplasm and transfers into nucleus after binding to 20E. Heat shock proteins (Hsps) are suggested to be important members of the SR complex. However, their role in nucleocytoplasmic shuttle of the EcR remains unclear. In the present study, we found that apoptozole (Hsp70 inhibitor) suppressed the larval molting by decreasing the expression of ecdysone signaling genes. Two cytoplasmic (Cy) Hsp70s (Hsp72 and Hsp73) interacted with both EcR and ultraspiracle (USP, the heterodimer partner of EcR). By immunohistochemistry experiments, we revealed that CyHsp70 co-localized with EcR in the cytoplasm, and that both apoptozole and interfering of CyHsp70 significantly inhibited the process of EcR entering the nucleus under 20E induction, while reducing the expression of ecdysone signaling genes. Interestingly, the nuclear localization of EcR was also promoted by two other stimuli, including JH and heat stress, and this promotion was inhibited by apoptozole. This implies that various stimuli can induce EcR entry into the nucleus, and that this process is mediated by CyHsp70. Curiously, neither JH nor heat stress activated the ecdysone signaling genes; instead, they have a significant inhibitory effect on them. Taken together, it seems that Cytoplasmic Hsp70s promote EcR transport into the nucleus by responding to various stimuli, and that the biological effects of various stimuli passing through the EcR are different. Thus, our data provide a new viewpoint to understand the mechanism of nucleocytoplasmic shuttle of EcR.


Subject(s)
Drosophila Proteins , Receptors, Steroid , Animals , Ecdysone , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Ecdysterone/metabolism , Metamorphosis, Biological/genetics , Juvenile Hormones/metabolism , Cytoplasm/metabolism , Drosophila Proteins/genetics
2.
World J Clin Cases ; 9(7): 1563-1579, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33728300

ABSTRACT

BACKGROUND: Nomograms for prognosis prediction in colorectal cancer patients are few, and prognostic indicators differ with age. AIM: To construct a new nomogram survival prediction tool for middle-aged and elderly patients with stage III rectal adenocarcinoma. METHODS: A total of 2773 eligible patients were divided into the training cohort (70%) and the validation cohort (30%). Optimal cutoff values were calculated using the X-tile software for continuous variables. Univariate and multivariate Cox proportional hazards regression analyses were used to determine overall survival (OS) and cancer-specific survival (CSS)-related prognostic factors. Two nomograms were successfully constructed. The discriminant and predictive ability and clinical usefulness of the model were also assessed by multiple methods of analysis. RESULTS: The 95%CI in the training group was 0.719 (0.690-0.749) and 0.733 (0.702-0.74), while that in the validation group was 0.739 (0.696-0.782) and 0.750 (0.701-0.800) for the OS and CSS nomogram prediction models, respectively. In the validation group, the AUC of the three-year survival rate was 0.762 and 0.770, while the AUC of the five-year survival rate was 0.722 and 0.744 for the OS and CSS nomograms, respectively. The nomogram distinguishes all-cause mortality from cancer-specific mortality in patients with different risk grades. The time-dependent AUC and decision curve analysis showed that the nomogram had good clinical predictive ability and decision efficacy and was significantly better than the tumor-node-metastases staging system. CONCLUSION: The survival prediction model constructed in this study is helpful in evaluating the prognosis of patients and can aid physicians in clinical diagnosis and treatment.

3.
Insect Sci ; 26(5): 821-830, 2019 Oct.
Article in English | MEDLINE | ID: mdl-29645353

ABSTRACT

Silkworm mutants are valuable resources for both transgenic breeding and gene discovery. PiggyBac-based random insertional mutagenesis has been widely used in gene functional studies. In order to discover genes involved in silk synthesis, a piggyBac-based random insertional library was constructed using Bombyx mori, and the mutants with abnormal cocoon were particularly screened. By this means, a "thin cocoon" mutant was identified. This mutant revealed thinner cocoon shell and shorter posterior silk gland (PSG) compared with the wild type. The messenger RNA (mRNA) levels of all the three fibroin genes, including Fib-H, Fib-L and P25, were significantly down-regulated in the PSG of mutants. Four piggyBac insertion sites were identified in Aquaporin (AQP), Longitudinals lacking protein-like (Lola), Glutamyl aminopeptidase-like (GluAP) and Loc101744460. The mRNA levels of all the four genes were significantly altered in the silk gland of mutants. In particular, the mRNA amount of AQP, a gene responsible for the regulation of osmotic pressure, decreased dramatically immediately prior to the spinning stage in the anterior silk gland of mutants. The identification of the genes disrupted in the "thin cocoon" mutant in this study provided useful information for understanding silk production and transgenic breeding of silkworms in the future.


Subject(s)
Bombyx/genetics , Silk/genetics , Animals , Bombyx/growth & development , Bombyx/metabolism , Fibroins/genetics , Insect Proteins/genetics , Larva/genetics , Larva/metabolism , Mutagenesis, Insertional/methods , RNA, Messenger , Silk/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...