Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 963
Filter
1.
Chemosphere ; 362: 142758, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969224

ABSTRACT

Perfluoroundecanoic acid (PFDA) is extensively utilized in the textile and food processing industries and may have a tumor-promoting effect by modulating the tumor microenvironment. Macrophages play crucial roles in tumor microenvironment as key regulators of tumor immunity. However, further investigation is needed to elucidate how PFDA interacts with macrophages and contributes to tumor progression. In this study, we treated the macrophage cell line RAW264.7 with various concentrations of PFDA and found that RAW264.7 transitioned into an M2 tumor-promoting phenotype. Through bioinformatic analysis and subsequent verification of molecular assays, we uncovered that PFDA could activate ß-catenin and enhance its nuclear translocation. Additionally, it was also observed that inhibiting ß-catenin nuclear translocation partly attenuated RAW264.7 M2 polarization induced by PFDA. The conditioned medium derived from PFDA-pretreated RAW264.7 cells significantly promoted the migration and invasion abilities of human ovarian cancer cells. Furthermore, in vivo studies corroborated that PFDA-pretreated RAW264.7 could promote tumor metastasis, which could be mitigated by pretreatment with the ß-catenin inhibitor ICG001. In conclusion, our study demonstrated that PFDA could promote cancer metastasis through regulating macrophage M2 polarization in a Wnt/ß-catenin-dependent manner.

2.
Food Funct ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039956

ABSTRACT

Experimental studies have shown that vitamin C has anti-cancer effects, but previous meta-analyses have indicated that the role of vitamin C in digestive system cancers (DSCs) is controversial. In this study, a systematic review and meta-analysis of the relationship between dietary intake/plasma concentration of vitamin C and the risk of DSC was conducted, evaluating 32 prospective studies with 1 664 498 participants. Dose-response and subgroup analyses were also performed. Systematic literature searches were performed in PubMed, EMBASE and Web of Science databases until 9th September 2023. Vitamin C intake significantly reduced DSCs risk (RR = 0.88, 95% confidence interval (CI) 0.83 to 0.93). The subgroup analyses showed the risks of oral, pharyngeal, and esophageal (OPE) cancers (0.81, 0.72 to 0.93), gastric cancer (0.81, 0.68 to 0.95), and colorectal cancer (0.89, 0.82 to 0.98) were negatively correlated with vitamin C intake, and the effect of vitamin C was different between colon cancer (0.87, 0.77 to 0.97) and rectal cancer (1.00, 0.84 to 1.19). However, plasma vitamin C concentration was only inversely associated with gastric cancer risk (0.74, 0.59 to 0.92). Dose-response analysis revealed that 250 and 65 mg day-1 vitamin C intakes had the strongest protective effect against OPE and gastric cancers respectively. These estimates suggest that vitamin C intake could significantly reduce gastrointestinal cancer incidence, including OPE, gastric, and colon cancers. Plasma vitamin C has a significant reduction effect on the incidence of gastric cancer only, but additional large-scale clinical studies are needed to determine its impact on the incidence of DSCs.

3.
Front Med (Lausanne) ; 11: 1402108, 2024.
Article in English | MEDLINE | ID: mdl-39050542

ABSTRACT

Background: Despite reports suggesting a link between obesity and keratoconus, the causal relationship is not fully understood. Methods: We used genome-wide association study (GWAS) data from public databases for a two-sample Mendelian randomization analysis to investigate the causal link between body mass index (BMI) and keratoconus. The primary method was inverse variance weighted (IVW), complemented by different analytical techniques and sensitivity analyses to ensure result robustness. A meta-analysis was also performed to bolster the findings' reliability. Results: Our study identified a significant causal relationship between BMI and keratoconus. Out of 20 Mendelian randomization (MR) analyses conducted, 9 showed heterogeneity or pleiotropy. Among the 11 analyses that met all three MR assumptions, 4 demonstrated a significant causal difference between BMI and keratoconus, while the remaining 7 showed a positive trend but were not statistically significant. Meta-analysis confirmed a significant causal relationship between BMI and keratoconus. Conclusion: There is a significant causal relationship between BMI and keratoconus, suggesting that obesity may be a risk factor for keratoconus.

4.
J Transl Med ; 22(1): 624, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965537

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS: The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS: Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS: Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).


Subject(s)
Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/diagnosis , Humans , China , Animals , ROC Curve , Reproducibility of Results , Mice , Mice, Inbred C57BL , Male , Databases, Genetic , Gene Expression Profiling , Support Vector Machine , Gene Expression Regulation
5.
Int J Ophthalmol ; 17(6): 1036-1041, 2024.
Article in English | MEDLINE | ID: mdl-38895686

ABSTRACT

AIM: To characterize the distribution of meibomian gland (MG) area loss (MGL) and its relationship with demographic characteristics, mites, and symptoms. METHODS: This retrospective observational study included patients who visited the Dry Eye Clinic of Shenzhen Eye Hospital between June 2020 and August 2021. General patient characteristics, ocular symptoms, Demodex test results of the eyelid edges, and the results of a comprehensive ocular surface analysis were collected. MGL was analyzed using Image J software. RESULTS: This study enrolled 1204 outpatients aged 20-80 (40.70±13.44)y, including 357 males (29.65%) and 847 females (70.35%). The patients were classified into mild (n=155; 12.87%), moderate (n=795; 66.03%), severe (n=206; 17.11%), and extremely severe (n=48; 3.99%) MGL groups. MGL was significantly larger in female than in male (P=0.006). The degree of MGL also significantly differed in age (P<0.001) and the more numbers of mites with severity (P<0.001). Multivariate disordered multinomial logistic regression analysis identified that female sex, older age, secretory symptoms, and a large number of mites were risk factors for MGL (P<0.05). CONCLUSION: Patients with MGL are more likely to be older, female, more numbers of mites, and increased secretion.

6.
Food Chem ; 457: 140092, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38901347

ABSTRACT

The main bioavailable phenolics from of Gongju (GJ) and their mechanism for hepato-protection remain unclear. To select the GJ phenolics with high bioavailability, chrysanthemum digestion and Caco-2 cells were used and their hepato-protective potential were examined by using AML-12 cells. The digestive recovery and small intestinal transit rate of the main phenolic compounds ranged from 28.52 to 69.53% and 6.57% âˆ¼ 15.50%, respectively. Among them, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid, showed higher small intestinal transit rates and digestive recoveries. Furthermore, we found that by increasing intracellular Catalase (CAT) and Superoxide dismutase (SOD) viability and lowering Malondialdehyde (MDA) level (P < 0.05), 3,5-dicaffeoylquinic acid significantly mitigated the oxidative damage of AML-12 liver cells more than the other two phenolics. Our results demonstrated that 3,5-dicaffeoylquninic acid was the primary phenolic compounds in GJ that effectively reduced liver damage, providing a theoretical basis for the development of GJ as a potentially useful resource for hepatoprotective diet.

7.
Am J Cancer Res ; 14(5): 2072-2087, 2024.
Article in English | MEDLINE | ID: mdl-38859866

ABSTRACT

Heat shock factor 1 (HSF1), an essential transcription factor for stress response, is exploited by various tumors to facilitate their initiation, progression, invasion, and migration. Amplification of HSF1 is widely regarded as an indicator in predicting cancer severity, the likelihood of treatment failure and reduced patient survival. Notably, HSF1 is markedly amplified in 40% of pancreatic cancer (PC), which typically have limited treatment options. HSF1 has been proven to be a promising therapeutic target for multiple cancers. However, a direct small molecule HSF1 inhibitor with sufficient bioactivity and reliable safety has not been developed clinically. In this study, we successfully established a high-throughput screening system utilizing luciferase reporter assay specifically designed for HSF1, which leads to the discovery of a potent small molecule inhibitor targeting HSF1. Homoharringtonine (HHT) selectively inhibited PC cell viability with high HSF1 expression and induced a markedly stronger tumor regression effect in the subcutaneous xenograft model than the comparator drug KRIBB11, known for its direct action on HSF1. Moreover, HHT shows promise in countering the resistance encountered with HSP90 inhibitors, which have been observed to increase heat shock response intensity in clinical trials. Mechanistically, HHT directly bound to HSF1, suppressing its expression and thereby inhibiting transcription of HSF1 target genes. In conclusion, our work presents a preclinical discovery and validation for HHT as a HSF1 inhibitor for PC treatment.

8.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892448

ABSTRACT

Canonical transient receptor potential channel 3 (TRPC3) is the most abundant TRPC channel in the brain and is highly expressed in all subfields of the hippocampus. Previous studies have suggested that TRPC3 channels may be involved in the hyperexcitability of hippocampal pyramidal neurons and seizures. Genetic ablation of TRPC3 channel expression reduced the intensity of pilocarpine-induced status epilepticus (SE). However, the underlying cellular mechanisms remain unexplored and the contribution of TRPC3 channels to SE-induced neurodegeneration is not determined. In this study, we investigated the contribution of TRPC3 channels to the electrophysiological properties of hippocampal pyramidal neurons and hippocampal synaptic plasticity, and the contribution of TRPC3 channels to seizure-induced neuronal cell death. We found that genetic ablation of TRPC3 expression did not alter basic electrophysiological properties of hippocampal pyramidal neurons and had a complex impact on epileptiform bursting in CA3. However, TRPC3 channels contribute significantly to long-term potentiation in CA1 and SE-induced neurodegeneration. Our results provided further support for therapeutic potential of TRPC3 inhibitors and raised new questions that need to be answered by future studies.


Subject(s)
Cell Death , Hippocampus , Pyramidal Cells , Seizures , TRPC Cation Channels , Animals , TRPC Cation Channels/metabolism , TRPC Cation Channels/genetics , Mice , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Hippocampus/metabolism , Hippocampus/pathology , Seizures/metabolism , Seizures/pathology , Status Epilepticus/metabolism , Status Epilepticus/pathology , Status Epilepticus/chemically induced , Male , Neurons/metabolism , Pilocarpine , Long-Term Potentiation , Mice, Knockout , Mice, Inbred C57BL , Neuronal Plasticity
9.
Arch Gerontol Geriatr ; 125: 105504, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38870707

ABSTRACT

BACKGROUND: Both we and others have found that RBC counts are significantly lower in older compared to younger. However, when gender is factored in, a significant age-related decrease of RBC counts is observed only in men but not in women. METHODS: qPCR and confocal microscopy were used to detect the presence of mtDNA in RBCs. Flow cytometry and specific inhibitors were used to determine how RBCs uptake cf-mtDNA. The peripheral blood was collected from 202 young adults and 207 older adults and RBC and plasma were isolated. The levels of TLR9+RBCs and apoptotic RBCs after uptake of cf-mtDNA by RBCs were measured by flow cytometry. The kit detects changes in SOD and MDA levels after cf-mtDNA uptake by RBCs. Young RBCs (YR) and old RBCs (OR) from single individuals were separated by Percoll centrifugation. RESULTS: We found a significant decrease in RBC counts and a significant increase in the RDW with aging only in men. We also found that significantly elevated mtDNA content in RBCs was observed only in men during aging and was not found in women. Further studies demonstrated that RBCs could take up cf-mtDNA via TLR9, and the uptake of mtDNA might lead to a decrease in the RBC number and an increase in RDW due to an increase of oxidative stress. CONCLUSIONS: The RBC mtDNA content might be a potential marker of RBC aging and the elevated RBC mtDNA content might be the cause of faster senescence in males than females.


Subject(s)
Aging , DNA, Mitochondrial , Erythrocytes , Oxidative Stress , Humans , Oxidative Stress/physiology , DNA, Mitochondrial/blood , Male , Female , Erythrocytes/metabolism , Aged , Adult , Aging/physiology , Aging/blood , Sex Factors , Flow Cytometry , Toll-Like Receptor 9/metabolism , Young Adult , Erythrocyte Count , Middle Aged , Cellular Senescence/physiology
10.
Immun Inflamm Dis ; 12(6): e1317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38869352

ABSTRACT

BACKGROUND: Numerous studies have demonstrated that Absent in Melanoma 2 (AIM2) is upregulated in aortic plaques, especially in Vascular Smooth Muscle Cells in Coronary Artery Disease (CAD), and is related to inflammasome-induced inflammation. However, the underlying mechanism of this phenomenon and the role of AIM2 in atherosclerosis remained unclear. METHODS: This study enrolled 133 CAD patients and 123 controls. We isolated Peripheral Blood Leukocytes (PBLs) and the mRNA expression of AIM2 inflammasome and its downstream genes (ASC, Caspase-1, IL-1ß, and IL-18) were detected by real-time quantitative PCR (qPCR). We assessed correlations between AIM2 expressions and clinical characteristics by multiple linear regression and spearman's correlation. The THP-1 cells cultured in poly(dA:dT), A151, interferon-gamma (IFN-γ), AG490, or JC2-11. And then the mRNA and protein levels of AIM2, ASC, Caspase-1, IL-1ß, IL-18, GSDMD, and STAT1 were analyzed by qPCR and Western blot analysis, respectively. The migration and adhesive capacity of THP-1 cells was assessed using an inverted microscope and an inverted fluorescence microscope, respectively. RESULTS: In this study, we found that expressions of components of AIM2 inflammasome and its downstream genes (ASC, Caspase-1, IL-1ß, and IL-18), were all increased in PBLs of CAD patients, which indicated the inflammasome activation. AIM2 inflammasome activation further induced pyroptosis, and stimulated migration and adhesion in monocyte cell lines, which was regulated by IFN-γ probably through JAK2/STAT1 pathway. In addition, AIM2 expressions were positively correlated with systemic inflammatory indicators as an independent risk factor for CAD. CONCLUSIONS: In conclusion, increased AIM2 expression, induced by the IFN-γ/JAK2/STAT1 signal, orientates monocytes to inflammatory status or even pyroptosis through AIM2 inflammasome activation, which is involved in the development of CAD.


Subject(s)
Coronary Artery Disease , DNA-Binding Proteins , Inflammasomes , Interferon-gamma , Janus Kinase 2 , Monocytes , Pyroptosis , STAT1 Transcription Factor , Signal Transduction , Aged , Female , Humans , Male , Middle Aged , Coronary Artery Disease/immunology , Coronary Artery Disease/metabolism , Coronary Artery Disease/pathology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Inflammasomes/metabolism , Interferon-gamma/metabolism , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Monocytes/metabolism , Monocytes/immunology , STAT1 Transcription Factor/metabolism , THP-1 Cells
11.
Sci Rep ; 14(1): 10952, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740850

ABSTRACT

It is recognized as a promising therapeutic strategy for cocaine use disorder to develop an efficient enzyme which can rapidly convert cocaine to physiologically inactive metabolites. We have designed and discovered a series of highly efficient cocaine hydrolases, including CocH5-Fc(M6) which is the currently known as the most efficient cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest biological half-life in rats. In the present study, we characterized the time courses of protein appearance, pH, structural integrity, and catalytic activity against cocaine in vitro and in vivo of a CocH5-Fc(M6) bulk drug substance produced in a bioreactor for its in vitro and in vivo stability after long-time storage under various temperatures (- 80, - 20, 4, 25, or 37 °C). Specifically, all the tested properties of the CocH5-Fc(M6) protein did not significantly change after the protein was stored at any of four temperatures including - 80, - 20, 4, and 25 °C for ~ 18 months. In comparison, at 37 °C, the protein was less stable, with a half-life of ~ 82 days for cocaine hydrolysis activity. Additionally, the in vivo studies further confirmed the linear elimination PK profile of CocH5-Fc(M6) with an elimination half-life of ~ 9 days. All the in vitro and in vivo data on the efficacy and stability of CocH5-Fc(M6) have consistently demonstrated that CocH5-Fc(M6) has the desired in vitro and in vivo stability as a promising therapeutic candidate for treatment of cocaine use disorder.


Subject(s)
Cocaine , Enzyme Stability , Animals , Cocaine/metabolism , Rats , Hydrolysis , Hydrogen-Ion Concentration , Male , Half-Life , Temperature , Amidohydrolases/metabolism , Carboxylic Ester Hydrolases , Recombinant Proteins
12.
Ocul Surf ; 33: 50-63, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703817

ABSTRACT

PURPOSE: To investigate the global transcriptional landscape of lacrimal gland cell populations in the GVHD mouse model. METHODS: Single-cell RNA sequencing and further bioinformatic analysis of dissociated lacrimal gland (LG) cells from the mouse model were performed. Parts of transcriptional results were confirmed by immunofluorescence staining. RESULTS: We identified 23 cell populations belonging to 11 cell types. In GVHD LG, the proportion of acinar cells, myoepithelial cells, and endothelial cells was remarkably decreased, while T cells and macrophages were significantly expanded. Gene expression analysis indicated decreased secretion function, extracellular matrix (ECM) synthesis, and increased chemokines of myoepithelial cells. A newly described epithelial population named Lrg1high epithelial cells, expressing distinct gene signatures, was exclusively identified in GVHD LG. The fibroblasts exhibited an inflammation gene pattern. The gene pattern of endothelial cells suggested an increased ability to recruit immune cells and damaged cell-cell junctions. T cells were mainly comprised of Th2 cells and effective memory CD8+ T cells. GVHD macrophages exhibited a Th2 cell-linked pattern. CONCLUSIONS: This single-cell atlas uncovered alterations of proportion and gene expression patterns of cell populations and constructed cell-cell communication networks of GVHD LG. These data may provide some new insight into understanding the development of ocular GVHD.


Subject(s)
Disease Models, Animal , Graft vs Host Disease , Lacrimal Apparatus , Animals , Mice , Lacrimal Apparatus/metabolism , Lacrimal Apparatus/pathology , Graft vs Host Disease/genetics , Graft vs Host Disease/metabolism , Single-Cell Analysis/methods , Mice, Inbred C57BL , Sequence Analysis, RNA/methods , Female , Gene Expression Profiling/methods , Mice, Inbred BALB C
13.
World J Gastroenterol ; 30(19): 2564-2574, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817663

ABSTRACT

BACKGROUND: Cell division cyclin 25C (CDC25C) is a protein that plays a critical role in the cell cycle, specifically in the transition from the G2 phase to the M phase. Recent research has shown that CDC25C could be a potential therapeutic target for cancers, particularly for hepatocellular carcinoma (HCC). However, the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood. AIM: To explore the impact of CDC25C on cell proliferation and apoptosis, as well as its regulatory mechanisms in HCC development. METHODS: Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences (LV-CDC25C shRNA) to knock down CDC25C. Subsequently, a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo. Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays, respectively. The expression of endoplasmic reticulum (ER) stress-related molecules (glucose-regulated protein 78, X-box binding protein-1, and C/EBP homologous protein) was measured in both cells and subcutaneous xenografts using quantitative real-time PCR (qRT-PCR) and western blotting. Additionally, apoptosis was investigated using flow cytometry, qRT-PCR, and western blotting. RESULTS: CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction. A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice. CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response, ultimately promoting ER stress-induced apoptosis in HCC cells. CONCLUSION: The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Endoplasmic Reticulum Stress , Gene Knockdown Techniques , Liver Neoplasms , Mice, Inbred C57BL , cdc25 Phosphatases , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , cdc25 Phosphatases/metabolism , cdc25 Phosphatases/genetics , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Cell Line, Tumor , Mice , Humans , RNA, Small Interfering/metabolism , Male , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Carcinogenesis/genetics
14.
Mol Cytogenet ; 17(1): 10, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38644482

ABSTRACT

BACKGROUND:  Noninvasive prenatal testing (NIPT) is widely used to screen for fetal aneuploidies. However, there are few reports of using NIPT for screening chromosomal microduplications and microdeletions. This study aimed to investigate the application efficiency of NIPT for detecting chromosomal microduplications. METHODS: Four cases of copy number gains on the long arm of chromosome 17 (17q12) were detected using NIPT and further confirmed using copy number variation (CNV) analysis based on chromosome microarray analysis (CMA). RESULTS: The prenatal diagnosis CMA results of the three cases showed that the microduplications in 17q12 (ranging from 1.5 to 1.9 Mb) were consistent with the NIPT results. The karyotypic analysis excluded other possible unbalanced rearrangements. The positive predictive value of NIPT for detecting chromosomal 17q12 microduplication was 75.0%. CONCLUSIONS:  NIPT has a good screening effect on 17q12 syndrome through prenatal diagnosis, therefore it could be considered for screening fetal CNV during the second trimester. With the clinical application of NIPT, invasive prenatal diagnoses could be effectively reduced while also improving the detection rate of fetal CNV.

15.
Front Aging Neurosci ; 16: 1382492, 2024.
Article in English | MEDLINE | ID: mdl-38646448

ABSTRACT

Activin A, a member of the transforming growth factor ß (TGF-ß) family, is widely recognized for its neurotrophic and neuroprotective function in the developing and injured brain, respectively. Moreover, in the healthy adult brain, activin A has been shown to tune signal processing at excitatory synapses in a fashion that improves cognitive performance. Because its level in human cerebrospinal fluid rises with age, we wondered whether activin A has a role in mitigating the gradual cognitive decline that healthy individuals experience in late-life. To interrogate the role of activin A in synaptic plasticity in the aging brain, we used an established transgenic mouse line, in which expression of a dominant-negative mutant of activin receptor IB (dnActRIB) serves to disrupt activin receptor signaling in a forebrain-specific fashion. In brain slices of young adult dnActRIB mice (2-4 months old), the NMDA receptor-dependent and -independent forms of long-term potentiation (LTP) at the Schaffer collateral-CA1 pyramidal cell synapse of the hippocampus were equally impaired relative to the extent of LTP measured in the wild-type preparation. Unexpectedly, the difference between the genotypes disappeared when the two forms of LTP were re-examined in slices from middle-aged mice (13-16 months old). Since the level of activin A and endogenous ActRIB both displayed a significant elevation in middle-aged hippocampus, we reasoned that with such a rise, the dominant-negative effect of the mutant receptors could be overcome. Substantiating this idea, we found that administration of recombinant activin A was indeed capable of restoring full-blown LTP in slices from young dnActRIB mice. Our data suggest that, beginning in the middle-aged brain, endogenous activin receptor signaling appears to become strengthened in an attempt to stave off cognitive decline. If further corroborated, this concept would also hold promise for new therapeutic venues to preserve cognitive functions in the aged brain.

16.
Dalton Trans ; 53(19): 8202-8213, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687296

ABSTRACT

In this study, two polymorphs of the [1,1'-dibutyl-4,4'-bipyridinium][Ni(mnt)2] salt (1) were synthesized. The dark-green polymorph (designated as 1-g) was prepared under ambient conditions by the rapid precipitation method in aqueous solutions. Subsequently, the red polymorph (labeled as 1-r) was obtained by subjecting 1-g to ultrasonication in MeOH at room temperature. Microanalysis, infrared spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) techniques were used to characterize the two polymorphs. Both 1-g and 1-r exhibit structural phase transitions: a reversible phase transition at ∼403 K (∼268 K) upon heating and 384 K (∼252 K) upon cooling for 1-g (1-r) within the temperature range below 473 K. Interestingly, on heating 1-r to 523 K, an irreversible phase transition occurred at about 494 K, resulting in the conversion of 1-r into 1-g. Relative to 1-r, 1-g represents a thermodynamically metastable phase wherein numerous high-energy conformations in butyl chains of cations are confined within the lattice owing to quick precipitation or rapid annealing from higher temperatures. Through variable-temperature single crystal and powder X-ray diffractions, UV-visible spectroscopy, dielectric spectroscopy, and DSC analyses, this study delves into the mechanism underlying phase transitions for each polymorph and the manual transformation between 1-g and 1-r as well.

17.
Brain Behav Immun ; 119: 539-553, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38663774

ABSTRACT

Interleukin-33 (IL-33), secreted by astrocytes, regulates the synapse development in the spinal cord and hippocampus and suppresses autoimmune disease in the central nervous system (CNS). However, the mechanism of unconventional protein secretion of this cytokine remains unclear. In this study, we found that IFN-γ promotes the active secretion of IL-33 from astrocytes, and the active secretion of IL-33 from cytoplasm to extracellular space was dependent on interaction with transmembrane emp24 domain 10 (TMED10) via the IL-1 like cytokine domain in astrocytes. Knockout of Il-33 or its receptor St2 induced hippocampal astrocyte activation and depressive-like disorder in naive mice, as well as increased spinal cord astrocyte activation and polarization to a neurotoxic reactive subtype and aggravated passive experimental autoimmune encephalomyelitis (EAE). Our results have identified that IL-33 is actively secreted by astrocytes through the unconventional protein secretion pathway facilitated by TMED10 channels. This process helps maintain CNS homeostasis by inhibiting astrocyte activation.


Subject(s)
Astrocytes , Encephalomyelitis, Autoimmune, Experimental , Homeostasis , Interleukin-33 , Mice, Inbred C57BL , Mice, Knockout , Animals , Mice , Astrocytes/metabolism , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Hippocampus/metabolism , Homeostasis/physiology , Interferon-gamma/metabolism , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33/metabolism , Membrane Proteins/metabolism , Spinal Cord/metabolism
18.
Article in English | MEDLINE | ID: mdl-38530540

ABSTRACT

Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.

19.
Sci Rep ; 14(1): 6959, 2024 03 23.
Article in English | MEDLINE | ID: mdl-38521811

ABSTRACT

Abdominal aortic aneurysm (AAA) is a deadly, permanent ballooning of the aortic artery. Pharmacological and genetic studies have pointed to multiple proteins, including microsomal prostaglandin E2 synthase-1 (mPGES-1), as potentially promising targets. However, it remains unknown whether administration of an mPGES-1 inhibitor can effectively attenuate AAA progression in animal models. There are still no FDA-approved pharmacological treatments for AAA. Current research stresses the importance of both anti-inflammatory drug targets and rigor of translatability. Notably, mPGES-1 is an inducible enzyme responsible for overproduction of prostaglandin E2 (PGE2)-a well-known principal pro-inflammatory prostanoid. Here we demonstrate for the first time that a highly selective mPGES-1 inhibitor (UK4b) can completely block further growth of AAA in the ApoE-/- angiotensin (Ang)II mouse model. Our findings show promise for the use of a mPGES-1 inhibitor like UK4b as interventional treatment of AAA and its potential translation into the clinical setting.


Subject(s)
Aortic Aneurysm, Abdominal , Animals , Mice , Angiotensin II , Aorta/metabolism , Aortic Aneurysm, Abdominal/drug therapy , Aortic Aneurysm, Abdominal/metabolism , Dinoprostone/therapeutic use , Disease Models, Animal , Prostaglandin-E Synthases/genetics , Prostaglandins
20.
World J Gastrointest Surg ; 16(2): 571-584, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463352

ABSTRACT

BACKGROUND: The efficacy and safety of anti-tumor necrosis factor-α (TNF-α) monoclonal antibody therapy [adalimumab (ADA) and infliximab (IFX)] with therapeutic drug monitoring (TDM), which has been proposed for inflammatory bowel disease (IBD) patients, are still controversial. AIM: To determine the efficacy and safety of anti-TNF-α monoclonal antibody therapy with proactive TDM in patients with IBD and to determine which subtype of IBD patients is most suitable for proactive TDM interventions. METHODS: As of July 2023, we searched for randomized controlled trials (RCTs) and observational studies in PubMed, Embase, and the Cochrane Library to compare anti-TNF-α monoclonal antibody therapy with proactive TDM with therapy with reactive TDM or empiric therapy. Pairwise and network meta-analyses were used to determine the IBD patient subtype that achieved clinical remission and to determine the need for surgery. RESULTS: This systematic review and meta-analysis yielded 13 studies after exclusion, and the baseline indicators were balanced. We found a significant increase in the number of patients who achieved clinical remission in the ADA [odds ratio (OR) = 1.416, 95% confidence interval (CI): 1.196-1.676] and RCT (OR = 1.393, 95%CI: 1.182-1.641) subgroups and a significant decrease in the number of patients who needed surgery in the proactive vs reactive (OR = 0.237, 95%CI: 0.101-0.558) and IFX + ADA (OR = 0.137, 95%CI: 0.032-0.588) subgroups, and the overall risk of adverse events was reduced (OR = 0.579, 95%CI: 0.391-0.858) according to the pairwise meta-analysis. Moreover, the network meta-analysis results suggested that patients with IBD treated with ADA (OR = 1.39, 95%CI: 1.19-1.63) were more likely to undergo TDM, especially in comparison with patients with reactive TDM (OR = 1.38, 95%CI: 1.07-1.77). CONCLUSION: Proactive TDM is more suitable for IBD patients treated with ADA and has obvious advantages over reactive TDM. We recommend proactive TDM in IBD patients who are treated with ADA.

SELECTION OF CITATIONS
SEARCH DETAIL
...