Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 388
Filter
1.
Healthcare (Basel) ; 12(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891150

ABSTRACT

OBJECTIVE: The primary objectives of this study are to assess the cost-effectiveness of early postnatal screening and prenatal psychological interventions for the prevention and treatment of postpartum depression (PPD) among Chinese pregnant women. Additionally, we aim to explore the most cost-effective prevention and treatment strategies for PPD in China. METHODS: We used TreeAge 2019 to construct a decision tree model, with the model assuming a simulated queue size of 10,000 people. The model employed Monte Carlo simulation to assess the cost-effectiveness of PPD prevention and treatment strategies. Transfer probabilities were derived from published studies and meta-analyses. Cost and effectiveness data were obtained from published sources and relevant studies. Incremental cost-effectiveness ratios (ICERs) were used to describe the results, with willingness-to-pay (WTP) thresholds set at China's gross domestic product (GDP) per capita. RESULTS: Compared to the usual care group, the cost per additional quality-adjusted life year (QALY) for the early postnatal screening group and the prenatal psychological interventions is USD 6840.28 and USD 3720.74, respectively. The cure rate of mixed treatments for PPD has the greatest impact on the model, while patient participation in treatment has a minor impact on the cost-effectiveness of prevention and treatment strategies. CONCLUSION: Both early postnatal screening and prenatal psychological interventions are found to be highly cost-effective strategies for preventing and treating PPD in China. Prenatal psychological interventions for pregnant women are the most cost-effective prevention and treatment strategy. As such, from the perspective of national payers, we recommend that maternal screening for PPD be implemented in China to identify high-risk groups early on and to facilitate effective intervention.

2.
Article in English | MEDLINE | ID: mdl-38720159

ABSTRACT

PURPOSE: This paper considers a new problem setting for multi-organ segmentation based on the following observations. In reality, (1) collecting a large-scale dataset from various institutes is usually impeded due to privacy issues; (2) many images are not labeled since the slice-by-slice annotation is costly; and (3) datasets may exhibit inconsistent, partial annotations across different institutes. Learning a federated model from these distributed, partially labeled, and unlabeled samples is an unexplored problem. METHODS: To simulate this multi-organ segmentation problem, several distributed clients and a central server are maintained. The central server coordinates with clients to learn a global model using distributed private datasets, which comprise a small part of partially labeled images and a large part of unlabeled images. To address this problem, a practical framework that unifies partially supervised learning (PSL), semi-supervised learning (SSL), and federated learning (FL) paradigms with PSL, SSL, and FL modules is proposed. The PSL module manages to learn from partially labeled samples. The SSL module extracts valuable information from unlabeled data. Besides, the FL module aggregates local information from distributed clients to generate a global statistical model. With the collaboration of three modules, the presented scheme could take advantage of these distributed imperfect datasets to train a generalizable model. RESULTS: The proposed method was extensively evaluated with multiple abdominal CT datasets, achieving an average result of 84.83% in Dice and 41.62 mm in 95HD for multi-organ (liver, spleen, and stomach) segmentation. Moreover, its efficacy in transfer learning further demonstrated its good generalization ability for downstream segmentation tasks. CONCLUSION: This study considers a novel problem of multi-organ segmentation, which aims to develop a generalizable model using distributed, partially labeled, and unlabeled CT images. A practical framework is presented, which, through extensive validation, has proved to be an effective solution, demonstrating strong potential in addressing this challenging problem.

3.
Healthc Technol Lett ; 11(2-3): 146-156, 2024.
Article in English | MEDLINE | ID: mdl-38638500

ABSTRACT

This paper focuses on a new and challenging problem related to instrument segmentation. This paper aims to learn a generalizable model from distributed datasets with various imperfect annotations. Collecting a large-scale dataset for centralized learning is usually impeded due to data silos and privacy issues. Besides, local clients, such as hospitals or medical institutes, may hold datasets with diverse and imperfect annotations. These datasets can include scarce annotations (many samples are unlabelled), noisy labels prone to errors, and scribble annotations with less precision. Federated learning (FL) has emerged as an attractive paradigm for developing global models with these locally distributed datasets. However, its potential in instrument segmentation has yet to be fully investigated. Moreover, the problem of learning from various imperfect annotations in an FL setup is rarely studied, even though it presents a more practical and beneficial scenario. This work rethinks instrument segmentation in such a setting and propose a practical FL framework for this issue. Notably, this approach surpassed centralized learning under various imperfect annotation settings. This method established a foundational benchmark, and future work can build upon it by considering each client owning various annotations and aligning closer with real-world complexities.

4.
Front Public Health ; 12: 1362465, 2024.
Article in English | MEDLINE | ID: mdl-38577289

ABSTRACT

Background: The underlying mechanism for stroke in patients with tuberculous meningitis (TBM) remains unclear. This study aimed to investigate the predictors of acute ischemic stroke (AIS) in TBM and whether AIS mediates the relationship between inflammation markers and functional disability. Methods: TBM patients admitted to five hospitals between January 2011 and December 2021 were consecutively observed. Generalized linear mixed model and subgroup analyses were performed to investigate predictors of AIS in patients with and without vascular risk factors (VAFs). Mediation analyses were performed to explore the potential causal chain in which AIS may mediate the relationship between neuroimaging markers of inflammation and 90-day functional outcomes. Results: A total of 1,353 patients with TBM were included. The percentage rate of AIS within 30 days after admission was 20.4 (95% CI, 18.2-22.6). A multivariate analysis suggested that age ≥35 years (OR = 1.49; 95% CI, 1.06-2.09; P = 0.019), hypertension (OR = 3.56; 95% CI, 2.42-5.24; P < 0.001), diabetes (OR = 1.78; 95% CI, 1.11-2.86; P = 0.016), smoking (OR = 2.88; 95% CI, 1.68-4.95; P < 0.001), definite TBM (OR = 0.19; 95% CI, 0.06-0.42; P < 0.001), disease severity (OR = 2.11; 95% CI, 1.50-2.90; P = 0.056), meningeal enhancement (OR = 1.66; 95% CI, 1.19-2.31; P = 0.002), and hydrocephalus (OR = 2.98; 95% CI, 1.98-4.49; P < 0.001) were associated with AIS. Subgroup analyses indicated that disease severity (P for interaction = 0.003), tuberculoma (P for interaction = 0.008), and meningeal enhancement (P for interaction < 0.001) were significantly different in patients with and without VAFs. Mediation analyses revealed that the proportion of the association between neuroimaging markers of inflammation and functional disability mediated by AIS was 16.98% (95% CI, 7.82-35.12) for meningeal enhancement and 3.39% (95% CI, 1.22-6.91) for hydrocephalus. Conclusion: Neuroimaging markers of inflammation were predictors of AIS in TBM patients. AIS mediates < 20% of the association between inflammation and the functional outcome at 90 days. More attention should be paid to clinical therapies targeting inflammation and hydrocephalus to directly improve functional outcomes.


Subject(s)
Hydrocephalus , Ischemic Stroke , Tuberculosis, Meningeal , Humans , Adult , Tuberculosis, Meningeal/complications , Tuberculosis, Meningeal/epidemiology , Tuberculosis, Meningeal/drug therapy , Ischemic Stroke/complications , Risk Factors , Inflammation/complications , Hydrocephalus/complications
5.
Digit Health ; 10: 20552076231224596, 2024.
Article in English | MEDLINE | ID: mdl-38205038

ABSTRACT

Objective: Investigating the digital health literacy of university students can facilitate their effective acquisition of health information and adoption of appropriate protective behaviors. This study aims to explore the subtypes of digital health literacy among university students during the COVID-19 pandemic and their association with mental health outcomes. Methods: From 17 November to 14 December 2022, a stratified random sampling approach was used to conduct an online questionnaire survey on digital health literacy, fear of COVID-19, and depression status among students at Jilin University, China. A total of 1060 valid responses were obtained in the survey. Latent profile analysis identified subtypes of digital health literacy and linear regression analyses were used to examine the association of digital health literacy to the mental health outcome. Results: Three latent profiles were identified: Profile 1-low digital health literacy (n = 66, 6.23%), Profile 2-moderate digital health literacy (n = 706, 66.60%), and Profile 3-high digital health literacy (n = 288, 27.17%). Results from linear regression demonstrated a negative correlation between digital health literacy and fear of COVID-19 (B = -2.954, P < 0.001) as well as depression (B = -2.619, P < 0.001) among university students. Conclusions: This study indicated that the majority of university students exhibit a moderate level of digital health literacy during the COVID-19 pandemic. Additionally, the study validates a negative correlation between digital health literacy and mental health among university students.

6.
Endocr Connect ; 13(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38197872

ABSTRACT

Although several studies have reported that high maternal BMI could influence the cumulative live birth rate (CLBR) in fresh embryo transfer cycles, the association of BMI with CLBR remains unclear in patients that completed IVF treatment. In this study, we examined the association of maternal BMI with CLBR, including repetitive one oocyte pick-up (OPU) and all fresh and frozen embryo transfer until live birth or embryos were run out. A total of 16,126 patients' data were included in the analysis and were divided into four groups based on BMI. We found that patients' characteristics, embryo parameters, and pregnancy outcomes differed among different BMI groups. Multivariate logistic regression showed that being underweight was associated with a higher possibility of having live birth than the reference group (OR (95% CI) 1.40 (1.22-1.59), P < 0.001), whereas being overweight and obese were associated with a lower possibility of having live birth than the reference group ((OR (95% CI) 0.81 (0.74-0.90), P < 0.001) and (OR (95% CI) 0.68 (0.55-0.85), P < 0.001)). After adjustment for confounding factors, the reference group was associated with a higher possibility of having live birth, with a significant difference found between the obese and reference groups (OR (95% CI) 0.55 (0.43-0.70), P < 0.001). An association was found between CLBR and BMI, indicating that an increase in BMI results in a decline in CLBR. Moreover, the CLBR of patients with different characteristics differed in the various BMI groups. Taken together, our data show that maternal BMI has a significant impact on CLBR.

7.
J Antimicrob Chemother ; 78(12): 2878-2885, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37864344

ABSTRACT

BACKGROUND: Food animal AMR surveillance programs assess only small numbers of Escherichia coli (from 100 to 600 per animal class) nationally each year, severely limiting the evaluation of public health risk(s). Here we demonstrate an affordable approach for early detection of emerging resistance on a broad scale that can also accurately characterize spatial and temporal changes in resistance. METHODS: Caecal samples (n = 295) obtained from 10 meat poultry were screened using high-throughput robotics. Initial screening via agar dilution (5310 plates) quantified AMR carriage (cfu/g) for each sample. Ciprofloxacin-resistant isolates (n = 91) proceeded to downstream broth microdilution susceptibility testing. A subset of 28 ciprofloxacin-resistant isolates underwent WGS and phylogenetic analysis. RESULTS: Intra- and inter-flock carriage of resistance varied with drug class. Ampicillin and tetracycline resistance was ubiquitous to most birds in all flocks with an average carriage rate of 5.8 log10 cfu/g. Gentamicin and ciprofloxacin-resistant E. coli colonized fewer birds, and had an average carriage rate of 1.2 log10 cfu/g and 1.0 log10 cfu/g of faeces, respectively. Resistance to extended-spectrum cephalosporins was absent. ST354 was the dominant ST among the WGS isolates, but they demonstrated markedly lower resistance gene carriage than their international counterparts. CONCLUSIONS: These data amply demonstrate the ineffectiveness of commonly relied-on approaches to AMR surveillance for achieving early detection of emergence, or for measuring spatial and temporal resistance trends. Genetic analysis suggested there has been transnational flow of a ciprofloxacin-resistant strain into Australian poultry flocks, explaining their detection in a nation that prohibits fluoroquinolone use in poultry.


Subject(s)
Escherichia coli Infections , Poultry , Animals , Anti-Bacterial Agents/pharmacology , Australia , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli , Escherichia coli Infections/epidemiology , Fluoroquinolones/pharmacology , Phylogeny
8.
Cell Host Microbe ; 31(11): 1882-1897.e10, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37848029

ABSTRACT

Epstein-Barr virus (EBV) is a global public health concern, as it is known to cause multiple diseases while also being etiologically associated with a wide range of epithelial and lymphoid malignancies. Currently, there is no available prophylactic vaccine against EBV. gB is the EBV fusion protein that mediates viral membrane fusion and participates in host recognition, making it critical for EBV infection in both B cells and epithelial cells. Here, we present a gB nanoparticle, gB-I53-50 NP, that displays multiple copies of gB. Compared with the gB trimer, gB-I53-50 NP shows improved structural integrity and stability, as well as enhanced immunogenicity in mice and non-human primate (NHP) preclinical models. Immunization and passive transfer demonstrate a robust and durable protective antibody response that protects humanized mice against lethal EBV challenge. This vaccine candidate demonstrates significant potential in preventing EBV infection, providing a possible platform for developing prophylactic vaccines for EBV.


Subject(s)
Epstein-Barr Virus Infections , Vaccines , Cricetinae , Animals , Mice , Herpesvirus 4, Human , Epstein-Barr Virus Infections/prevention & control , Antibody Formation , CHO Cells , Antibodies, Neutralizing , Antibodies, Viral
9.
Int J Mol Med ; 52(4)2023 10.
Article in English | MEDLINE | ID: mdl-37654184

ABSTRACT

Acute pancreatitis (AP)­associated lung injury (ALI) is a critical complication of AP. Adropin is a regulatory protein of immune metabolism. The present study aimed to explore the immunomodulatory effects of adropin on AP­ALI. For this purpose, serum samples of patients with AP were collected and the expression levels of serum adropin were detected using ELISA. Animal models of AP and adropin knockout (Adro­KO) were constructed, and adropin expression in serum and lung tissues was investigated. The levels of fibrosis and apoptosis were evaluated using hematoxylin and eosin staining, Masson's staining and immunohistochemistry of in lung tissue. M1/M2 type macrophages in the lungs were detected using immunofluorescence staining, western blot analysis and reverse transcription­quantitative PCR. As shown by the results, adropin expression was decreased in AP. In the Adro­KO + L­arginine (L­Arg) group, macrophage infiltration, fibrosis and apoptosis were increased. The expression of peroxisome proliferator­ activated receptor γ (PPARγ) was downregulated, and the macrophages exhibited a trend towards M1 polarization in the Adro­KO + L­Arg group. Adropin exogenous supplement attenuated the levels of fibrosis and apoptosis in the model of AP. Adropin exogenous supplement also increased PPARγ expression by the regulation of the phosphorylation levels, which was associated with M2 macrophage polarization. On the whole, the findings of the present study suggest that adropin promotes the M2 polarization of lung macrophages and reduces the severity of AP­ALI by regulating the function of PPARγ through the regulation of its phosphorylation level.


Subject(s)
Lung Injury , Macrophages , Animals , Male , Mice , Lung Injury/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Pancreatitis/metabolism , PPAR gamma/metabolism , Phosphorylation
10.
Front Immunol ; 14: 1246181, 2023.
Article in English | MEDLINE | ID: mdl-37711612

ABSTRACT

Shrimp aquaculture has been seriously affected by acute hepatopancreatic necrosis disease (AHPND), caused by a strain of Vibrio parahaemolyticus that carries the Pir toxin plasmids (V. parahaemolyticus (AHPND)). In this study, the transcription factor, Kruppel homolog 1-like of Peneaus vannamei (PvKr-h1), was significantly induced in shrimp hemocytes after V. parahaemolyticus (AHPND) challenge, suggesting that PvKr-h1 is involved in shrimp immune response. Knockdown of PvKr-h1 followed by V. parahaemolyticus (AHPND) challenge increased bacterial abundance in shrimp hemolymph coupled with high shrimp mortality. Moreover, transcriptome and immunofluorescence analyses revealed that PvKr-h1 silencing followed by V. parahaemolyticus (AHPND) challenge dysregulated the expression of several antioxidant-related enzyme genes, such as Cu-Zu SOD, GPX, and GST, and antimicrobial peptide genes, i.e., CRUs and PENs, and reduced ROS activity and nuclear translocation of Relish. These data reveal that PvKr-h1 regulates shrimps' immune response to V. parahaemolyticus (AHPND) infection by suppressing antioxidant-related enzymes, enhancing ROS production and promoting nuclei import of PvRelish to stimulate antimicrobial peptide genes expression.


Subject(s)
Vibrio parahaemolyticus , Animals , Antioxidants , Hemocytes , Reactive Oxygen Species , Crustacea , Acute Disease , Antimicrobial Peptides , Necrosis
11.
PLoS One ; 18(7): e0281848, 2023.
Article in English | MEDLINE | ID: mdl-37418382

ABSTRACT

Controlling the use of the most critically important antimicrobials (CIAs) in food animals has been identified as one of the key measures required to curb the transmission of antimicrobial resistant bacteria from animals to humans. Expanding the evidence demonstrating the effectiveness of restricting CIA usage for preventing the emergence of resistance to key drugs amongst commensal organisms in animal production would do much to strengthen international efforts to control antimicrobial resistance (AMR). As Australia has strict controls on antimicrobial use in layer hens, and internationally comparatively low levels of poultry disease due to strict national biosecurity measures, we investigated whether these circumstances have resulted in curtailing development of critical forms of AMR. The work comprised a cross-sectional national survey of 62 commercial layer farms with each assessed for AMR in Escherichia coli isolates recovered from faeces. Minimum inhibitory concentration analysis using a panel of 13 antimicrobials was performed on 296 isolates, with those exhibiting phenotypic resistance to fluoroquinolones (a CIA) or multi-class drug resistance (MCR) subjected to whole genome sequencing. Overall, 53.0% of isolates were susceptible to all antimicrobials tested, and all isolates were susceptible to cefoxitin, ceftiofur, ceftriaxone, chloramphenicol and colistin. Resistance was observed for amoxicillin-clavulanate (9.1%), ampicillin (16.2%), ciprofloxacin (2.7%), florfenicol (2.4%), gentamicin (1.0%), streptomycin (4.7%), tetracycline (37.8%) and trimethoprim/sulfamethoxazole (9.5%). MCR was observed in 21 isolates (7.0%), with two isolates exhibiting resistance to four antimicrobial classes. Whole genome sequencing revealed that ciprofloxacin-resistant (fluoroquinolone) isolates were devoid of both known chromosomal mutations in the quinolone resistance determinant regions and plasmid-mediated quinolone resistance genes (qnr)-other than in one isolate (ST155) which carried the qnrS gene. Two MCR E. coli isolates with ciprofloxacin-resistance were found to be carrying known resistance genes including aadA1, dfrA1, strA, strB, sul1, sul2, tet(A), blaTEM-1B, qnrS1 and tet(A). Overall, this study found that E. coli from layer hens in Australia have low rates of AMR, likely due to strict control on antimicrobial usage achieved by the sum of regulation and voluntary measures.


Subject(s)
Escherichia coli , Quinolones , Animals , Female , Humans , Chickens , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Australia , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fluoroquinolones , Microbial Sensitivity Tests , Ciprofloxacin , Drug Resistance, Multiple, Bacterial/genetics
12.
PeerJ Comput Sci ; 9: e1358, 2023.
Article in English | MEDLINE | ID: mdl-37346662

ABSTRACT

Formation building for multi-small-AUV systems with on-board cameras is crucial under the limited communication underwater environment. A hybrid coordination strategy is proposed for the rapid convergence to a leader-follower pattern. The strategy consists of two parts: a time-optimal local-position-based controller (TOLC) and a distributed asynchronous discrete weighted consensus controller (ADWCC). The TOLC controller is designed to optimize the assignation of AUVs' destinations in the given pattern and guide each AUV to its destination by the shortest feasible distance. The ADWCC controller is developed to direct the AUVs blocked by obstacles to reach their destinations with the information from the perceived neighbors by on-board cameras. The rapidity of the proposed strategy is theoretically discussed. The effectiveness of the proposed algorithm has been verified in the simulation environments in both MATLAB and Blender.

13.
Sci Adv ; 9(21): eadg1778, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37224259

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) has been implicated in the pathogenesis of Kaposi's sarcoma (KS) and other malignancies. The cellular origin of KS has been suggested to be either mesenchymal stem cells (MSCs) or endothelial cells. However, receptor(s) for KSHV to infect MSCs remains unknown. By combining bioinformatics analysis and shRNA screening, we identify neuropilin 1 (NRP1) as an entry receptor for KSHV infection of MSCs. Functionally, NRP1 knockout and overexpression in MSCs significantly reduce and promote, respectively, KSHV infection. Mechanistically, NRP1 facilitated the binding and internalization of KSHV by interacting with KSHV glycoprotein B (gB), which was blocked by soluble NRP1 protein. Furthermore, NRP1 interacts with TGF-ß receptor type 2 (TGFBR2) through their respective cytoplasmic domains and thus activates the TGFBR1/2 complex, which facilitates the macropinocytosis-mediated KSHV internalization via the small GTPases Cdc42 and Rac1. Together, these findings implicate that KSHV has evolved a strategy to invade MSCs by harnessing NRP1 and TGF-beta receptors to stimulate macropinocytosis.


Subject(s)
Herpesvirus 8, Human , Mesenchymal Stem Cells , Receptor, Transforming Growth Factor-beta Type I , Neuropilin-1/genetics , Endothelial Cells
14.
Syst Appl Microbiol ; 46(3): 126419, 2023 May.
Article in English | MEDLINE | ID: mdl-37030242

ABSTRACT

Two novel strains GSK1Z-4-2T and MQZ15Z-1 were isolated from branches of mangrove plants collected from Guangxi Zhuang Autonomous Region, China. Both strains were Gram-negative, aerobic, non-flagellated and non-spore-forming bacteria. The comparison of 16S rRNA gene sequences initially indicated that the two strains were assigned to the genus Ancylobacter with sharing the highest similarity to Ancylobacter pratisalsi DSM 102029T (97.3%). The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between strains GSK1Z-4-2T and MQZ15Z-1 were 99.9%, 97.4% and 77.4%, respectively, which revealed that the two strains belonged to the same species. Phylogenetic analyses based on 16S rRNA gene sequences and the core proteome showed that the two strains formed a well-supported cluster with A. pratisalsi DSM 102029T. Moreover, the ANI and isDDH values between strain GSK1Z-4-2T and A. pratisalsi DSM 102029T were 83.0% and 25.8%, respectively, demonstrating that strain GSK1Z-4-2T was a previously undescribed species. Meanwhile, strains GSK1Z-4-2T and MQZ15Z-1 exhibited most of chemotaxonomic and phenotypic features consistent with the description of the genus Ancylobacter. Based on the polyphasic data, strains GSK1Z-4-2T and MQZ15Z-1 should represent a novel species of the genus Ancylobacter, for which the name Ancylobacter mangrovi sp. nov. is proposed. The type strain is GSK1Z-4-2T (=MCCC 1K07181T = JCM 34924T).


Subject(s)
Fatty Acids , Phylogeny , RNA, Ribosomal, 16S/genetics , China , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Sequence Analysis, DNA , Bacterial Typing Techniques
15.
Obes Surg ; 33(6): 1676-1686, 2023 06.
Article in English | MEDLINE | ID: mdl-37052783

ABSTRACT

PURPOSE: Duodenal-jejunal bypass (DJB) has a definite hypoglycemic effect; however, the intrinsic mechanisms remain unclear. The purpose of this study was to determine whether DJB may cause changes in the gut microbiota and metabolite of portal venous blood and to explore the effects of DJB on blood glucose metabolism. METHODS: T2DM was induced in rats with a high-fat diet and a low dose of streptozotocin, which were randomly divided into two groups: Sham operation and DJB. RESULTS: DJB significantly improved several diabetic parameters. 16S rRNA analyses showed that the compositions of the gut microbiota were significantly different between the two groups. The results of metabolomics showed that DJB could significantly regulate the metabolites, among which diaminopimelic acid and isovaleric acid had a significant down-regulation in the DJB group. Transcriptomic analysis showed that DJB can regulate the expression of hepatic genes related to abnormal glucose metabolism, such as Ltc4s, Alox15, Ggt1, Gpat3, and Cyp2c24. Correlation analyses showed that diaminopimelic acid was positively associated with Allobaculum, Serratia, and Turicibacter. There was a significant correlation between diaminopimelic acid and Gpat3, and its Spearman correlation coefficient was the highest among metabolite-DEG pairs (ρ=0.97). DISCUSSIONS: These results suggest an important cue of the relation between the diaminopimelic acid, Gpat3, and gut microbiome in the mechanism by which DJB can improve glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Obesity, Morbid , Rats , Animals , Diaminopimelic Acid/metabolism , Multiomics , RNA, Ribosomal, 16S , Obesity, Morbid/surgery , Jejunum/surgery , Jejunum/metabolism , Duodenum/surgery , Blood Glucose/metabolism , Glucose/metabolism
17.
Article in English | MEDLINE | ID: mdl-36884384

ABSTRACT

A endospore-forming bacterium, designated strain KQZ6P-2T, was isolated from surface-sterilized bark of the mangrove plant Kandelia candel, collected from Maowei Sea Mangrove Nature Reserve in Guangxi Zhuang Autonomous Region, China. Strain KQZ6P-2T was able to grow at NaCl concentrations in the range of 0-3 % (w/v) with optimum growth at 0-1 % (w/v) NaCl. Growth occurred at 20-42 °C (optimal growth at 30-37 °C) and pH 5.5-6.5 (optimal growth at pH 6.5). The 16S rRNA gene sequence similarity between strain KQZ6P-2T and its closest phylogenetic neighbour Paenibacillus chibensis JCM 9905T was 98.2 %. Phylogenetic analyses using 16S rRNA gene sequences showed that strain KQZ6P-2T formed a distinct lineage with Paenibacillus chibensis JCM 9905T. The draft genome of strain KQZ6P-2T was 5 937 633 bp in size and its DNA G+C content was 47.2mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values among strain KQZ6P-2T and its related species were below the cut-off levels of 95, 70 and 95.5%, respec-tively. The cell-wall peptidoglycan of strain KQZ6P-2T contained meso-diaminopimelic acid as the diagnostic diamino acid. Major cellular fatty acids were anteiso-C15:0 and C16:0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, an unidentified aminolipid and five unidentified lipids. Based on phylogenetic, phenotypic and chemotaxonomic data, strain KQZ6P-2T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus mangrovi sp. nov. is proposed. The type strain is KQZ6P-2T (=MCCC 1K07172T =JCM 34931T).


Subject(s)
Paenibacillus , Rhizophoraceae , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Plant Bark , DNA, Bacterial/genetics , Base Composition , China , Bacterial Typing Techniques , Sequence Analysis, DNA , Phospholipids/chemistry , Comparative Genomic Hybridization
18.
Front Med (Lausanne) ; 10: 1103223, 2023.
Article in English | MEDLINE | ID: mdl-36910478

ABSTRACT

Objective: Splenectomy is a vital treatment method for hypersplenism with portal hypertension. However, portal venous system thrombosis (PVST) is a serious problem after splenectomy. Therefore, constructing an effective visual risk prediction model is important for preventing, diagnosing, and treating early PVST in hepatolenticular degeneration (HLD) surgical patients. Methods: Between January 2016 and December 2021, 309 HLD patients were selected. The data were split into a development set (215 cases from January 2016 to December 2019) and a validation set (94 cases from January 2019 to December 2021). Patients' clinical characteristics and laboratory examinations were obtained from electronic medical record system, and PVST was diagnosed using Doppler ultrasound. Univariate and multivariate logistic regression analyses were used to establish the prediction model by variables filtered by LASSO regression, and a nomogram was drawn. The area under the curve (AUC) of receiver operating characteristic (ROC) curve and Hosmer-Lemeshow goodness-of-fit test were used to evaluate the differentiation and calibration of the model. Clinical net benefit was evaluated by using decision curve analysis (DCA). The 36-month survival of PVST was studied as well. Results: Seven predictive variables were screened out using LASSO regression analysis, including grade, POD14D-dimer (Postoperative day 14 D-dimer), POD7PLT (Postoperative day 7 platelet), PVD (portal vein diameter), PVV (portal vein velocity), PVF (portal vein flow), and SVD (splenic vein diameter). Multivariate logistic regression analysis revealed that all seven predictive variables had predictive values (P < 0.05). According to the prediction variables, the diagnosis model and predictive nomogram of PVST cases were constructed. The AUC under the ROC curve obtained from the prediction model was 0.812 (95% CI: 0.756-0.869) in the development set and 0.839 (95% CI: 0.756-0.921) in the validation set. Hosmer-Lemeshow goodness-of-fit test fitted well (P = 0.858 for development set; P = 0.137 for validation set). The nomogram model was found to be clinically useful by DCA. The 36-month survival rate of three sites of PVST was significantly different from that of one (P = 0.047) and two sites (P = 0.023). Conclusion: The proposed nomogram-based prediction model can predict postoperative PVST. Meanwhile, an earlier intervention should be performed on three sites of PVST.

19.
Molecules ; 28(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838642

ABSTRACT

A series of (S)-1-phenyl-3,4-dihydroisoquinoline-2(1H)-carboxamide derivatives was synthesized and evaluated for inhibitory activity against monoamine oxidase (MAO)-A and-B, acetylcholine esterase (AChE), and butyrylcholine esterase (BChE). Four compounds (2i, 2p, 2t, and 2v) showed good inhibitory activity against both MAO-A and MAO-B, and two compounds (2d and 2j) showed selective inhibitory activity against MAO-A, with IC50 values of 1.38 and 2.48 µM, respectively. None of the compounds showed inhibitory activity against AChE; however, 12 compounds showed inhibitory activity against BChE. None of the active compounds showed cytotoxicity against L929cells. Molecular docking revealed several important interactions between the active analogs and amino acid residues of the protein receptors. This research paves the way for further study aimed at designing MAO and ChE inhibitors for the treatment of depression and neurodegenerative disorders.


Subject(s)
Cholinesterases , Monoamine Oxidase , Monoamine Oxidase/metabolism , Cholinesterases/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism
20.
Mitochondrial DNA B Resour ; 8(1): 157-160, 2023.
Article in English | MEDLINE | ID: mdl-36733275

ABSTRACT

The mitochondrial genome of Cuspidaria undata (Verrill, 1884) was sequenced in full using Illumina HiSeq 2500. The circular mitochondrial DNA (mtDNA) was 16,266 bp in size, encoded 37 genes, and contained 13 protein-coding genes (PCGs), 2 rRNAs and 22 tRNAs. The gene order of the 13 PCGs in this species exhibited extensive rearrangement and differences in comparison to other Cuspidariidae, indicating that gene order is not conserved within this family. Phylogenetic analysis based on 13 PCGs and 2 rRNAs recovered a monophyletic Cuspidariidae.

SELECTION OF CITATIONS
SEARCH DETAIL
...