Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 107, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475902

ABSTRACT

BACKGROUND: Breast cancer is the most prevalent malignant tumor among women, with hormone receptor-positive cases constituting 70%. Fulvestrant, an antagonist for these receptors, is utilized for advanced metastatic hormone receptor-positive breast cancer. Yet, its inhibitory effect on tumor cells is not strong, and it lacks direct cytotoxicity. Consequently, there's a significant challenge in preventing recurrence and metastasis once cancer cells develop resistance to fulvestrant. METHOD: To address these challenges, we engineered tumor-targeting nanoparticles termed 131I-fulvestrant-ALA-PFP-FA-NPs. This involved labeling fulvestrant with 131I to create 131I-fulvestrant. Subsequently, we incorporated the 131I-fulvestrant and 5-aminolevulinic acid (ALA) into fluorocarbon nanoparticles with folate as the targeting agent. This design facilitates a tri-modal therapeutic approach-endocrine therapy, radiotherapy, and PDT for estrogen receptor-positive breast cancer. RESULTS: Our in vivo and in vitro tests showed that the drug-laden nanoparticles effectively zeroed in on tumors. This targeting efficiency was corroborated using SPECT-CT imaging, confocal microscopy, and small animal fluorescence imaging. The 131I-fulvestrant-ALA-PFP-FA-NPs maintained stability and showcased potent antitumor capabilities due to the synergism of endocrine therapy, radiotherapy, and CR-PDT. Throughout the treatment duration, we detected no notable irregularities in hematological, biochemical, or histological evaluations. CONCLUSION: We've pioneered a nanoparticle system loaded with radioactive isotope 131I, endocrine therapeutic agents, and a photosensitizer precursor. This system offers a combined modality of radiotherapy, endocrine treatment, and PDT for breast cancer.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Breast Neoplasms/drug therapy , Drug Interactions , Iodine Radioisotopes
2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-941042

ABSTRACT

OBJECTIVE@#To investigate the effects of co-expression of sodium iodide symporter (NIS) reporter gene on the proliferation and cytotoxic activity of chimeric antigen receptor (CAR)-T cells in vitro.@*METHODS@#T cells expressing CD19 CAR (CAR-T cells), NIS reporter gene (NIS-T cells), and both (NIS-CAR-T cells) were prepared by lentiviral infection. The transfection rates of NIS and CAR were determined by flow cytometry, and the cell proliferation rate was assessed using CCK-8 assay at 24, 48 and 72 h of routine cell culture. The T cells were co-cultured with Nalm6 tumor cells at the effector-target ratios of 1∶2, 1∶1, 2∶1 and 4∶1 for 24, 48 and 72 h, and the cytotoxicity of CAR-T cells to the tumor cells was evaluated using lactate dehydrogenase (LDH) assay. ELISA was used to detect the release of IFN-γ and TNF-β in the co-culture supernatant, and the function of NIS was detected with iodine uptake test.@*RESULTS@#The CAR transfection rate was 91.91% in CAR-T cells and 99.41% in NIS-CAR-T cells; the NIS transfection rate was 47.83% in NIS-T cells and 50.24% in NIS- CAR-T cells. No significant difference in the proliferation rate was observed between CAR-T and NIS-CAR-T cells cultured for 24, 48 or 72 h (P> 0.05). In the co-cultures with different effector-target ratios, the tumor cell killing rate was significantly higher in CAR-T group than in NIS-CAR-T group at 24 h (P < 0.05), but no significant difference was observed between the two groups at 48 h or 72 h (P>0.05). Higher IFN-γ and TNF-β release levels were detected in both CAR-T and NIS-CAR-T groups than in the control group (P < 0.05). NIS-T cells and NIS-CAR-T cells showed similar capacity of specific iodine uptake (P>0.05), which was significantly higher than that in the control T cells (P < 0.05).@*CONCLUSION@#The co-expression of the NIS reporter gene does not affect CAR expression, proliferation or tumor cell-killing ability of CAR-T cells.


Subject(s)
Antineoplastic Agents , Cell Line, Tumor , Cell Proliferation , Iodine , Lymphotoxin-alpha , Receptors, Chimeric Antigen , Symporters , T-Lymphocytes
3.
Chinese Journal of Hepatology ; (12): 341-345, 2006.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-341369

ABSTRACT

<p><b>OBJECTIVE</b>To study whether antisense oligonucleotides and ultrasonic microbubble intensifier transfection combined with ultrasound irradiation is an effective and directional way in reversing multidrug resistance (MDR) in tumors.</p><p><b>METHODS</b>Mdr1, mrp, and lrp genes antisense oligonucleotides on the ultrasound microbubble intensifier were transfected for the human HepG2/ADM cell lines and then the cells were radiated with low intensity ultrasound. The effects of the reversion of carcinoma cells' MDR and the reduction of their malignancy and growth capability in vitro and in vivo were assessed using RT-PCR, Western blot and MTT.</p><p><b>RESULTS</b>The treatment restrained the multiplication of the human HepG2/AMD cell lines. The levels of their mRNA and protein of cells' mdr1 and mrp genes dropped significantly. Growth of the subcutaneous transplanted tumors in the nude mice decreased.</p><p><b>CONCLUSIONS</b>Transfection of MDR genes antisense oligonucleotides on the ultrasonic microbubble intensifier combined with low intensity ultrasound radiation may serve as a new treatment method for hepatocellular carcinoma.</p>


Subject(s)
Animals , Humans , Male , Mice , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Genetics , Carcinoma, Hepatocellular , Pathology , Cell Line, Tumor , Drug Resistance, Multiple , Genetics , Drug Resistance, Neoplasm , Genetics , Liver Neoplasms , Pathology , Mice, Inbred BALB C , Microbubbles , Oligonucleotides, Antisense , Genetics , Transfection , Ultrasonics
SELECTION OF CITATIONS
SEARCH DETAIL
...