Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Acta Pharmaceutica Sinica ; (12): 64-69, 2011.
Article in English | WPRIM (Western Pacific) | ID: wpr-353340

ABSTRACT

It was found that psoralen derivative could perform a Friedel-Crafts acylation smoothly with acetic anhydride to give 5'-acetylpsoralen in a 73% yield. In the presence of boron trifluoride etherate, 5'-acetylpsoralen reacted with both aromatic amines and aliphatic amine smoothly to afford 5'-Schiff-base group substituted psoralen derivatives in 72%-92% yields. The novel synthetic method has the advantages of cheap materials, mild reaction conditions, good yields and high regioselectivity in the Friedel-Crafts acylation. Cell viability assay by MTT demonstrates that some of the psoralen derivatives 6 have antiproliferative activities.


Subject(s)
Humans , Acylation , Boranes , Chemistry , Cell Line, Tumor , Cell Proliferation , Furocoumarins , Chemistry , Pharmacology , Molecular Structure , Schiff Bases , Chemistry
2.
Article in English | WPRIM (Western Pacific) | ID: wpr-249211

ABSTRACT

Studies on coupled transfer of soil moisture and heat have been widely carried out for decades. However, little work has been done on red soils, widespread in southern China. The simultaneous transfer of soil moisture and heat depended on soil physical properties and the climate conditions. Red soil is heavy clay and high content of free iron and aluminum oxide. The climate conditions are characterized by the clear four seasons and the serious seasonal drought. The great air temperature differences annually and diurnally result in significant fluctuation in soil temperature in top layer. The closed and evaporating columns experiments with red soil were conducted to simulate the coupled transfer of soil water and heat under the overlaying and opening fields' conditions, and to analyze the effects of soil temperature gradient on the water transfer and the effects of initial soil water contents on the transfer of soil water and heat. The closed and evaporating columns were designed similarly with about 18 degrees C temperatures differences between the top and bottom boundary, except of the upper end closed or exposed to the air, respectively. Results showed that in the closed column, water moved towards the cold end driven by temperature gradient, while the transported water decreased with the increasing initial soil water content until the initial soil water content reached to field capacity equivalent, when almost no changes for the soil moisture profile. In the evaporating column, the net transport of soil water was simultaneously driven by evaporation and temperature gradients, and the drier soil was more influenced by temperature gradient than by evaporation. In drier soil, it took a longer time for the temperature to reach equilibrium, because of more net amount of transported water.

3.
Article in English | WPRIM (Western Pacific) | ID: wpr-249210

ABSTRACT

Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China. Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top end, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model, while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation from Taylor and Lary (1964), the effects of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that K(h), soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, K(S), and the water diffusivity, D(theta), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution, which would affect water redistribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...