Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Acta Pharmaceutica Sinica B ; (6): 1500-1513, 2022.
Article in English | WPRIM (Western Pacific) | ID: wpr-929370

ABSTRACT

Artemisia annua is the main natural source of artemisinin production. In A. annua, extended drought stress severely reduces its biomass and artemisinin production while short-term water-withholding or abscisic acid (ABA) treatment can increase artemisinin biosynthesis. ABA-responsive transcription factor AabZIP1 and JA signaling AaMYC2 have been shown in separate studies to promote artemisinin production by targeting several artemisinin biosynthesis genes. Here, we found AabZIP1 promote the expression of multiple artemisinin biosynthesis genes including AaDBR2 and AaALDH1, which AabZIP1 does not directly activate. Subsequently, it was found that AabZIP1 up-regulates AaMYC2 expression through direct binding to its promoter, and that AaMYC2 binds to the promoter of AaALDH1 to activate its transcription. In addition, AabZIP1 directly transactivates wax biosynthesis genes AaCER1 and AaCYP86A1. The biosynthesis of artemisinin and cuticular wax and the tolerance of drought stress were significantly increased by AabZIP1 overexpression, whereas they were significantly decreased in RNAi-AabZIP1 plants. Collectively, we have uncovered the AabZIP1-AaMYC2 transcriptional module as a point of cross-talk between ABA and JA signaling in artemisinin biosynthesis, which may have general implications. We have also identified AabZIP1 as a promising candidate gene for the development of A. annua plants with high artemisinin content and drought tolerance in metabolic engineering breeding.

2.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-670395

ABSTRACT

Tropane alkaloids,such as hyoscyamine (or its more stable racemate atropine) and scopolamine,are remembered as the oldest drugs in medicine with wide pharmaceutical applications clinically for their mydriatic,antispasmodic,anticholinergic,analgesic and sedative properties.Presently,the supply of tropane alkaloids are entirely rested on their isolation from plant materials,yet the low contents of tropane alkaloids in plants raise the requirement to breed new varieties of high-yield tropane alkaloids and improving the production of tropane alkaloids in hairy root cultures or plants by biotechnology has be a research focus in the field of secondary metabolism.For the past decade,there have been important progresses on biosynthesis of tropane alkaloids and their molecular biology,some new pathway genes have been identified and many achievements have also been acquired in metabolic engineering of tropane alkaloids.This review summarized the recent advances in above aspects,and the problems and orientations of future research are also discussed and proposed.

3.
Acta Pharmaceutica Sinica ; (12): 1346-55, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-505057

ABSTRACT

Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering.

4.
Acta Pharmaceutica Sinica ; (12): 621-6, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-483371

ABSTRACT

Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.

5.
Acta Pharmaceutica Sinica ; (12): 1438-41, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-457235

ABSTRACT

A new dibenzocyclooctadiene lignan, renchangianin E (1) was isolated from the stems of Kadsura renchangiana. Its structure and stereochemistry were elucidated by spectroscopic methods, including 2D-NMR techniques.

6.
Acta Pharmaceutica Sinica ; (12): 1346-52, 2014.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-457181

ABSTRACT

Artemisnin is a novel sesquiterpene lactone with an internal peroxide bridge structure, which is extracted from traditional Chinese herb Artemisia annua L. (Qinghao). Recommended by World Health Organization, artemisinin is the first-line drug in the treatment of encephalic and chloroquine-resistant malaria. In the present study, transgenic A. annua plants were developed by overexpressing the key enzymes involved in the biosynthetic pathway of artemisinin. Based on Agrobacterium-mediated transformation methods, transgenic plants of A. annua with overexpression of both HDR and ADS were obtained through hygromycin screening. The genomic PCR analysis confirmed six transgenic lines in which both HDR and ADS were integrated into genome. The gene expression analysis given by real-time quantitative PCR showed that all the transgenic lines had higher expression levels of HDR and ADS than the non-transgenic control (except ah3 in which the expression level of ADS showed no significant difference compared with control); and the HPLC analysis of artemisinin demonstrated that transgenic A. annua plants produced artemisinin at significantly higher level than non-transgenic plants. Especially, the highest content of artemisinin was found in transgenic line ah70, in which the artemisinin content was 3.48 times compared with that in non-transgenic lines. In summary, overexpression of HDR and ADS facilitated artemisinin biosynthesis and this method could be applied to develop transgenic plants of A. annua with higher yield of artemisinin.

7.
Acta Pharmaceutica Sinica ; (12): 243-9, 2013.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-445526

ABSTRACT

Atropa belladonna L. is the officially medicinal plant species and the main commercial source of scopolamine and hyoscyamine in China. In this study, we reported the simultaneous overexpression of two functional genes involved in biosynthesis of scopolamine, which respectively encoded the upstream key enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53) and the downstream key enzyme hyoscyamine 6beta-hydroxylase (H6H; EC 1.14.11.11) in transgenic hair root cultures of Atropa belladonna L. HPLC results suggested that four transgenic hair root lines produced higher content of scopolamine at different levels compared with nontransgenic hair root cultures. And scopolamine content increased to 8.2 fold in transgenic line PH2 compared with that of control line; and the other four transgenic lines showed an increase of scopolamine compared with the control. Two of the transgenic hair root lines produced higher levels of tropane alkaloids, and the content increased to 2.7 fold in transgenic line PH2 compared with the control. The gene expression profile indicated that both PMT and H6H expressed at a different levels in different transgenic hair root lines, which would be helpful for biosynthesis of scopolamine. Our studies suggested that overexpression of A. belladonna endogenous genes PMT and H6H could enhance tropane alkaloid biosynthesis.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-356019

ABSTRACT

<p><b>OBJECTIVE</b>To study the relative expression of the genes involved in artemisinin biosynthesis in different tissues including roots, stems, leaves and flowers of Artemisia annua, and establish the relationship between gene expression and artemisinin accumulation, eventually leading to discover the mainly effective genes involved in artemisinin biosynthesis.</p><p><b>METHOD</b>The 7 functional genes involved in artemisinin biosynthesis were detected at the level of expression by using qRT-PCR, and simultaneously the content of artemisinin in the 4 investigated tissues was detected in parallel.</p><p><b>RESULT</b>The 3 genes including HMGR, DXR and FPS which were involved in the upstream pathway of artemisinin biosynthesis showed the highest expression levels in flowers, and the 4 functional genes including ADS, CYP71AV1, CPR and AAR which were involved in the artemisinin-specific biosynthetic pathway were found to be expressed in all the 4 detected tissues. The highest expression level of ADS was found in leaves, then followed by flowers, and the lowest expression level of ADS was found in roots and stems. CYP71AV1 had highest expression level in flowers and lowest in leaves. CPR showed highest expression level in flowers, and AAR had lower expression levels in the other 3 artemisinin-specific pathway genes in all the tissues. The highest content of artemisinin was found in leaves (0.343 mg x g(-1)), then followed by flowers (0.152 mg x g(-1)), roots (0.062 mg x g(-1)) and stems (0.060 mg x g(-1)).</p><p><b>CONCLUSION</b>In the biosynthesis of artemisinin, the upstream genes including HMGR from the MVA pathway, DXR from the MEP pathway and the checkpoint gene FPS were much more active in flowers, and this suggested that flowers might be the tissues of artemisinin precursor biosynthesis, and further DXR contributed more to artemisinin biosynthesis. The positive correlation of ADS expression and artemisinin content in tissues demonstrated that ADS played a very important role in artemisinin biosynthesis, which was the ideal target for engineering the artemisinin biosynthetic pathway. In summary, the functional genes involved in artemisinin biosynthesis do not express at the same level but synergistically.</p>


Subject(s)
Artemisia annua , Chemistry , Genetics , Metabolism , Artemisinins , Metabolism , Plant Proteins , Genetics , Metabolism , Polymerase Chain Reaction
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-285395

ABSTRACT

<p><b>OBJECTIVE</b>To study the variations of flavonoids contents in vine tips of sweetpotato (Ipomoea batatas) among different varieties, parts and the time of topping.</p><p><b>METHOD</b>The flavonoid contents in leaf, petiole and stem of vine tips at 6 different topping time of 3 varieties for vegetable-use Pushu 53, Guangcaishu No. 2 and Fushu 7-6, which were collected from Chongqing were determined by UV spectrophotometry with rutin as a standard substance.</p><p><b>RESULT</b>The results showed that the flavonoid content of Guangcaishu No. 2 was higher than that of Pusu 53, so was that of Pusu 53 than that of Fushu 7-6. The average flavonoid contents in leaf of 3 varieties were between 3.66 mg x L(-1) and 11.09 mg x L(-1) during 6 topping time, and those in petiole, stem were between 2.20-5.26 mg x L(-1) and 4.03-7.79 mg x L(-1), respectively. The rations of average flavonoid contents in leaf, petiole and stem to the total contents of vine tips among 3 varieties during their whole topping periods were 46.71%, 20.65% and 32.63%, respectively. The contents during earlier topping time were higher than those of later periods. The variance analysis of flavonoid contents revealed that there was significant difference between different varieties, parts and time of topping and significant interactions among varieties, parts and time of topping.</p><p><b>CONCLUSION</b>The results of the study indicate that the contents of flavonoid should be considered for the breeding, cultivation and industrialization of sweetpotato for vegetable-use.</p>


Subject(s)
China , Flavonoids , Ipomoea batatas , Chemistry , Plant Extracts , Plant Structures , Chemistry , Time Factors , Vegetables , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...