Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38732762

ABSTRACT

It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.

2.
Int J Mol Sci ; 24(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37834364

ABSTRACT

The synthesis of PHA was first investigated using WFOs obtained from smoked-sprat heads, substandard fresh sprats, and fresh mackerel heads and backbones. All the WFOs ensured the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of PHA, regardless of the degree of lipid saturation (from 0.52 to 0.65) and the set and ratio of fatty acids (FA), which was represented by acids with chain lengths from C14 to C24. The bacterial biomass concentration and PHA synthesis were comparable (4.1-4.6 g/L and about 70%) when using WFO obtained from smoked-sprat heads and fresh mackerel, and it was twice as high as the bacterial biomass concentration from the fresh sprat waste. This depended on the type of WFO, the bacteria synthesized P(3HB) homopolymer or P(3HB-co-3HV-co-3HHx) copolymer, which had a lower degree of crystallinity (Cx 71%) and a lower molecular weight (Mn 134 kDa) compared to the P(3HB) (Mn 175-209 kDa and Cx 74-78%) at comparable temperatures (Tmelt and Tdegr of 158-168 °C and 261-284 °C, respectively). The new types of WFO, studied for the first time, are suitable as a carbon substrates for PHA synthesis. The WFOs obtained in the production of canned Baltic sprat and Baltic mackerel can be considered a promising and renewable substrate for PHA biosynthesis.


Subject(s)
Cupriavidus necator , Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Fish Oils , Bacteria , Fatty Acids
3.
Int J Mol Sci ; 24(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37762383

ABSTRACT

The properties, features of thermal behavior and crystallization of copolymers containing various types of valerate monomers were studied depending on the set and ratio of monomers. We synthesized and studied the properties of three-component copolymers containing unusual monomers 4-hydroxyvalerate (4HV) and 3-hydroxy-4-methylvalerate (3H4MV), in addition to the usual 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) monomers. The results showed that P(3HB-co-3HV-co-4HV) and P(3HB-co-3HV-co-3H4MV) terpolymers tended to increase thermal stability, especially for methylated samples, including an increase in the gap between melting point (Tmelt) and thermal degradation temperature (Tdegr), an increase in the melting point and glass transition temperature, as well as a lower degree of crystallinity (40-46%) compared with P(3HB-co-3HV) (58-66%). The copolymer crystallization kinetics depended on the set and ratio of monomers. For terpolymers during exothermic crystallization, higher rates of spherulite formation (Gmax) were registered, reaching, depending on the ratio of monomers, 1.6-2.0 µm/min, which was several times higher than the Gmax index (0.52 µm/min) for the P(3HB-co-3HV) copolymer. The revealed differences in the thermal properties and crystallization kinetics of terpolymers indicate that they are promising polymers for processing into high quality products from melts.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Polyesters/chemistry , Valerates , Crystallization , Temperature
4.
Polymers (Basel) ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447536

ABSTRACT

The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 µm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.

5.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850288

ABSTRACT

The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of sulfur-containing polyhydroxyalkanoates (PHA) by this strain on media containing fructose and three different precursors (3-mercaptopropionic acid, 3',3'-dithiodipropionic acid and 3',3'-thiodipropionic acid). By varying the concentration and number of doses of the precursors added into the bacterial culture, it was possible to find conditions that ensure the formation of 3-mercaptopropionate (3MP) monomers from the precursors and their incorporation into the C-chain of poly(3-hydroxybutyrate). A series of P(3HB-co-3MP) copolymer samples with different content of 3MP monomers (from 2.04 to 39.0 mol.%) were synthesized and the physicochemical properties were studied. The effect of 3MP monomers is manifested in a certain decrease in the molecular weight of the samples and an increase in polydispersity. Temperature changes are manifested in the appearance of two peaks in the melting region with different intervals regardless of the 3MP content. The studied P(3HB-co-3MP) samples, regardless of the content of 3MP monomers, are characterized by equalization of the ratio of the amorphous and crystalline phases and have a close degree of crystallinity with a minimum of 42%, = and a maximum of 54%.

6.
Polymers (Basel) ; 15(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36771832

ABSTRACT

The results of surface modification of solvent casting films made from polyhydroxyalkanoates (PHAs) of various compositions are presented: homopolymer poly-3-hydroxybutyrate P(3HB) and copolymers comprising various combinations of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate(4HB), and 3-hydroxyhexanoate (3HHx) monomers treated with a CO2 laser in continuous and quasi-pulsed radiation modes. The effects of PHAs film surface modification, depending on the composition and ratio of monomers according to the results of the study of SEM and AFM, contact angles of wetting with water, adhesion and growth of fibroblasts have been revealed for the laser radiation regime used. Under continuous irradiation with vector lines, melted regions in the form of grooves are formed on the surface of the films, in which most of the samples have increased values of the contact angle and a decrease in roughness. The quasi-pulse mode by the raster method causes the formation of holes without pronounced melted zones, the total area of which is lower by 20% compared to the area of melted grooves. The number of viable fibroblasts NIH 3T3 on the films after the quasi-pulse mode is 1.5-2.0 times higher compared to the continuous mode, and depends to a greater extent on the laser treatment mode than on the PHAs' composition. The use of various modes of laser modification on the surface of PHAs with different compositions makes it possible to influence the morphology and properties of polymer films in a targeted manner. The results that have been obtained contribute to solving the critical issue of functional biodegradable polymeric materials.

7.
Polymers (Basel) ; 14(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36236173

ABSTRACT

Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.

8.
Polymers (Basel) ; 14(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36080743

ABSTRACT

Three-component slow-release fungicide formulations with different modes of action of the active ingredients for suppressing potato pathogens were constructed for the first time. The difenoconazole, mefenoxam, prothioconazole, and azoxystrobin fungicides were embedded in the degradable polymer P(3HB)/birch wood flour blend and examined using SEM, IR spectroscopy, X-ray analysis, DTA, and DSC. Results showed that no chemical bonds were established between the components and that they were physical mixtures that had a lower degree of crystallinity compared to the initial P(3HB), which suggested different crystallization kinetics in the mixtures. The degradation behavior of the experimental formulations was investigated in laboratory micro-ecosystems with pre-characterized field soil. The slow-release fungicide formulations were prolonged-action forms with a half-life of at least 50-60 d, enabling gradual and sustained delivery of the active ingredients to plants. All slow-release fungicide formulations had a strong inhibitory effect on the most common and harmful potato pathogens (Phytophthorainfestans, Alternarialongipes, Rhizoctoniasolani, and Fusariumsolani).

9.
Bioengineering (Basel) ; 9(4)2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35447714

ABSTRACT

To increase the availability and expand the raw material base, the production of polyhydroxyalkanoates (PHA) by the wild strain Cupriavidus necator B-10646 on hydrolysates of sugar beet molasses was studied. The hydrolysis of molasses was carried out using ß-fructofuranosidase, which provides a high conversion of sucrose (88.9%) to hexoses. We showed the necessity to adjust the chemical composition of molasses hydrolysate to balance with the physiological needs of C. necator B-10646 and reduce excess sugars and nitrogen and eliminate phosphorus deficiency. The modes of cultivation of bacteria on diluted hydrolyzed molasses with the controlled feeding of phosphorus and glucose were implemented. Depending on the ratio of sugars introduced into the bacterial culture due to the molasses hydrolysate and glucose additions, the bacterial biomass concentration was obtained from 20-25 to 80-85 g/L with a polymer content up to 80%. The hydrolysates of molasses containing trace amounts of propionate and valerate were used to synthesize a P(3HB-co-3HV) copolymer with minor inclusions of 3-hydroxyvlaerate monomers. The introduction of precursors into the medium ensured the synthesis of copolymers with reduced values of the degree of crystallinity, containing, in addition to 3HB, monomers 3HB, 4HB, or 3HHx in an amount of 12-16 mol.%.

10.
Environ Sci Pollut Res Int ; 29(14): 20249-20264, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34727312

ABSTRACT

The efficacy of slow-release formulations of tribenuron-methyl (TBM) embedded in the matrix of degradable poly(3-hydroxybutyrate) blended with birch wood flour [polymer/wood flour/herbicide 50/30/20 wt.%] was compared with the efficacy of TBM as the active ingredient of the Mortira commercial formulation, which was applied as post-emergence spray to treat spring wheat cv. Novosibirskaya 15. The study was conducted in Central Siberia (in the environs of the city of Krasnoyarsk, Russia) from May to August 2020. The biological efficacy of the embedded TBM was 92.3%, which was considerably higher than the biological efficacy of the Mortira formulation used as the post-emergence spray (15.4%). The embedding of TBM into degradable blended matrix enabled long-duration functioning of this unstable herbicide in soil. The sensitivity of weed plants to TBM differed depending on the species. TBM was more effective against A. retroflexus and A. blitoides, which were killed at an earlier stage, than against C. album and G. aparine, whose percentage increased in the earlier stage and which were controlled by the herbicide less effectively and at later stages. On the plot treated with the embedded herbicide, the parameters of the wheat yield structure were the best, and the total yield was the highest: 3360 ± 40 kg/ha versus 3250 ± 50 kg/ha in the group of plants sprayed with the Mortira formulation. The grain produced in all groups was of high quality and was classified as Grade 1 food grain. The highest quality parameters (grain hectoliter mass, gluten, and protein contents) were obtained in the group of plants treated with the embedded herbicide. The study of the embedded TBM confirmed the high efficacy of the experimental formulation.


Subject(s)
Herbicides , Arylsulfonates , Delayed-Action Preparations/chemistry , Herbicides/chemistry , Triticum/metabolism
11.
Polymers (Basel) ; 13(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578042

ABSTRACT

The bacterial strain isolated from soil was identified as Cupriavidus necator IBP/SFU-1 and investigated as a PHA producer. The strain was found to be able to grow and synthesize PHAs under autotrophic conditions and showed a broad organotrophic potential towards different carbon sources: sugars, glycerol, fatty acids, and plant oils. The highest cell concentrations (7-8 g/L) and PHA contents were produced from oleic acid (78%), fructose, glucose, and palm oil (over 80%). The type of the carbon source influenced the PHA chemical composition and properties: when grown on oleic acid, the strain synthesized the P(3HB-co-3HV) copolymer; on plant oils, the P(3HB-co-3HV-co-3HHx) terpolymer, and on the other substrates, the P(3HB) homopolymer. The type of the carbon source influenced molecular-weight properties of PHAs: P(3HB) synthesized under autotrophic growth conditions, from CO2, had the highest number-average (290 ± 15 kDa) and weight-average (850 ± 25 kDa) molecular weights and the lowest polydispersity (2.9 ± 0.2); polymers synthesized from organic carbon sources showed increased polydispersity and reduced molecular weight. The carbon source was not found to affect the degree of crystallinity and thermal properties of the PHAs. The type of the carbon source determined not only PHA composition and molecular weight but also surface microstructure and porosity of the polymer films. The new strain can be recommended as a promising P(3HB) producer from palm oil, oleic acid, and sugars (fructose and glucose) and as a producer of P(3HB-co-3HV) from oleic acid and P(3HB-co-3HV-co-3HHx) from palm oil.

12.
Polymers (Basel) ; 14(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35012158

ABSTRACT

One of the major challenges in PHA biotechnology is optimization of biotechnological processes of the entire synthesis, mainly by using new inexpensive carbon substrates. A promising substrate for PHA synthesis may be the sugars extracted from the Jerusalem artichoke. In the present study, hydrolysates of Jerusalem artichoke (JA) tubers and vegetative biomass were produced and used as carbon substrate for PHA synthesis. The hydrolysis procedure (the combination of aqueous extraction and acid hydrolysis, process temperature and duration) influenced the content of reducing substances (RS), monosaccharide contents, and the fructose/glucose ratio. All types of hydrolysates tested as substrates for cultivation of three strains-C. necator B-10646 and R. eutropha B 5786 and B 8562-were suitable for PHA synthesis, producing different biomass concentrations and polymer contents. The most productive process, conducted in 12-L fermenters, was achieved on hydrolysates of JA tubers (X = 66.9 g/L, 82% PHA) and vegetative biomass (55.1 g/L and 62% PHA) produced by aqueous extraction of sugars at 80 °C followed by acid hydrolysis at 60 °C, using the most productive strain, C. necator B-10646. The effects of JA hydrolysates on physicochemical properties of PHAs were studied for the first time. P(3HB) specimens synthesized from the JA hydrolysates, regardless of the source (tubers or vegetative biomass), hydrolysis conditions, and PHA producing strain employed, exhibited the 100-120 °C difference between the Tmelt and Tdegr, prevailing of the crystalline phase over the amorphous one (Cx between 69 and 75%), and variations in weight average molecular weight (409-480) kDa. Supplementation of the culture medium of C. necator B-10646 grown on JA hydrolysates with potassium valerate and ε-caprolactone resulted in the synthesis of P(3HB-co-3HV) and P(3HB-co-4HB) copolymers that had decreased degrees of crystallinity and molecular weights, which influenced the porosity and surface roughness of polymer films prepared from them. The study shows that JA hydrolysates used as carbon source enabled productive synthesis of PHAs, comparable to synthesis from pure sugars. The next step is to scale up PHA synthesis from JA hydrolysates and conduct the feasibility study. The present study contributes to the solution of the critical problem of PHA biotechnology-finding widely available and inexpensive substrates.

13.
ACS Omega ; 5(39): 25135-25147, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33043192

ABSTRACT

The herbicidal activity of long-acting formulations of metribuzin and tribenuron methyl herbicides embedded in granules prepared from a mixture of degradable poly(3-hydroxybutyrate) and birch wood flour was studied in laboratory-grown weeds of various species and in wheat Triticum aestivum and barley Hordeum vulgare stands infested by weeds. The constructed formulations effectively suppressed all species of weeds studied. The biological effectiveness of herbicide formulations toward intact plants in wheat and barley stands infested with weeds was close to 100%, which was significantly higher than the effect of their free forms. The more effective suppression of weeds by embedded herbicides was beneficial for the growth of crops whose aboveground biomass was 8-13 to 20% greater than that of the crops in the treatments with free herbicides. Embedded metribuzin and tribenuron methyl exhibit sustained and pronounced herbicidal activity and are effective for pre-emergence soil application for crops infested with weeds of various species.

14.
Int J Biol Macromol ; 164: 121-130, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32679327

ABSTRACT

The study addresses the growth of the wild-type strain Cupriavidus necator B-10646 and synthesis of polyhydroxyalkanoates by this strain on media containing plant oils with different compositions of fatty acids: palm, Siberian oilseed, and refined and unrefined sunflower seed oils. The study showed that the best carbon substrate was palm oil. Comparison of fatty acid compositions of the starting oils and unutilized residual substrates showed that C. necator B-10646 cells consumed the fatty acids from palm oil evenly while in experiments with other oils, they utilized polyenoic fatty acids first. Higher production parameters of the culture were obtained by preparation of emulsified oil medium using Tween 80 and sodium cocoyl glutamate as emulsifiers. All polyhydroxyalkanoate specimens were terpolymers that contained 3-hydroxybutyrate as the major component and minor amounts of 3-hydroxyvalerate (0.9-1.9 mol%) and 3-hydroxyhexanoate (0.5-1.1 mol%). Molecular weight of polyhydroxyalkanoate specimens depended on the type of plant oil and emulsifier.


Subject(s)
Culture Media/pharmacology , Cupriavidus necator/drug effects , Plant Oils/pharmacology , Polyhydroxyalkanoates/biosynthesis , Bacteriological Techniques , Brassicaceae , Cupriavidus necator/growth & development , Cupriavidus necator/metabolism , Emulsifying Agents , Emulsions , Fatty Acids/analysis , Fatty Acids/pharmacology , Molecular Weight , Palm Oil/pharmacology , Polyhydroxyalkanoates/analysis , Polysorbates , Sunflower Oil/pharmacology
15.
Pest Manag Sci ; 76(5): 1772-1785, 2020 May.
Article in English | MEDLINE | ID: mdl-31785186

ABSTRACT

BACKGROUND: The purpose of the present study was to develop ecofriendly herbicide formulations. Its main aim was to develop and investigate slow-release formulations of herbicides (metribuzin, tribenuron-methyl, and fenoxaprop-P-ethyl) of different structure, solubility, and specificity, which were loaded into a degradable matrix of poly-3-hydroxybutyrate (P(3HB)) blended with available natural materials (peat, clay, and wood flour). RESULTS: Differences in the structure and physicochemical properties of the formulations were studied depending on the type of the matrix. Herbicide release and accumulation in soil were associated with the solubility of the herbicide. Fourier-transform infrared spectroscopy showed that no chemical bonds were formed between the components in the experimental formulations. Degradation of the formulations in agro-transformed soil in laboratory conditions was chiefly influenced by the shape of the specimens (granules or pellets) while the effect of the type of filler (peat, clay, or wood flour) was insignificant. The use of granules enabled more rapid accumulation of the herbicides in soil: their peak concentrations were reached after 3 weeks of incubation while the concentrations of the herbicides released from the pellets were the highest after 5-7 weeks. Loading of the herbicides into the polymer matrix composed of the slowly degraded P(3HB) and natural materials enabled both sustained function of the formulations in soil (lasting between 1.5 and ≥3 months) and stable activity of the otherwise rapidly inactivated herbicides such as tribenuron-methyl and fenoxaprop-P-ethyl. CONCLUSION: The experimental herbicide formulations enabled slow release of the active ingredients to soil. © 2019 Society of Chemical Industry.


Subject(s)
Herbicides/chemistry , Delayed-Action Preparations , Hydroxybutyrates , Polyesters , Soil
16.
J Agric Food Chem ; 67(33): 9220-9231, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31347838

ABSTRACT

Slow-release fungicide formulations (azoxystrobin, epoxiconazole, and tebuconazole) shaped as pellets and granules in a matrix of biodegradable poly(3-hydroxybutyrate) and natural fillers (clay, wood flour, and peat) were constructed. Infrared spectroscopy showed no formation of chemical bonds between components in the experimental formulations. The formulations of pesticides had antifungal activity against Fusarium verticillioides in vitro. A study of biodegradation of the experimental fungicide formulations in the soil showed that the degradation process was mainly influenced by the type of formulation without significant influence of the type of filler. More active destruction of the granules led to a more rapid accumulation of fungicides in the soil. The content of fungicides present in the soil as a result of degradation of the formulations and fungicide release was determined by their solubility. Thus, all formulations are able to function in the soil for a long time, ensuring gradual and sustained delivery of fungicides.


Subject(s)
Clay/chemistry , Delayed-Action Preparations/chemistry , Drug Compounding/methods , Fungicides, Industrial/chemistry , Hydroxybutyrates/chemistry , Polyesters/chemistry , Soil/chemistry , Wood/chemistry , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Compounding/instrumentation , Epoxy Compounds/chemistry , Epoxy Compounds/pharmacology , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Kinetics , Pyrimidines/chemistry , Pyrimidines/pharmacology , Strobilurins/chemistry , Strobilurins/pharmacology , Triazoles/chemistry , Triazoles/pharmacology
17.
Biomacromolecules ; 20(9): 3261-3270, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31090397

ABSTRACT

The synthesis of polyhydroxyalkanoates (PHAs) was scaled up to pilot production in a 150-L fermenter on sugars (fructose and glucose) and purified and crude glycerol in a culture of the wild-type strain Cupriavidus necator B-10646. Over 60 h of cultivation, a cell concentration of 150-160 g/L was obtained on purified glycerol and glucose; cultivation on fructose and crude glycerol resulted in a cell concentration of 130 ± 10 g/L. Polymer content and yield coefficients for the biomass were similar on all substrates (80-85 wt % and 0.29-0.33 kg biomass/kg carbon substrate, respectively). Copolymers poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and terpolymers poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) having a decreased degree of crystallinity (36-46%) were first synthesized in the scaled-up process using C. necator B-10646 cultivated on glycerol. These results will provide the basis for scaling-up PHA synthesis in an organotrophic C. necator B-10646 culture.


Subject(s)
Polyesters/chemistry , Polyhydroxyalkanoates/biosynthesis , Polymers/chemistry , Water/chemistry , Biomass , Bioreactors , Cupriavidus necator/growth & development , Cupriavidus necator/metabolism , Glycerol/chemistry , Oxidation-Reduction , Polyhydroxyalkanoates/chemistry , Polymers/metabolism , Sugars/pharmacology
18.
J Environ Sci Health B ; 54(3): 196-204, 2019.
Article in English | MEDLINE | ID: mdl-30638127

ABSTRACT

In this study, tebuconazole (TEB)-loaded poly-3-hydroxybutyrate (P3HB)-based microparticles were developed and comprehensively characterized. TEB-loaded microparticles with the initial loading amounts of the fungicide of 10, 25, and 50% of the polymer mass (TEB 10, TEB 25, and TEB 50%) were prepared using emulsion technique. Encapsulation efficiency of TEB varied from 59 to 86%. As the loading amount was increased, the average diameter of microparticles increased too, from 41.3 to 71.7 µm, while zeta potential was not influenced by TEB loading, varying between -32.6 and -35.7 mV. TEB was gradually released from the microparticles to the model medium, and after 60 d, from 25 to 43% of TEB was released depending on the content of the encapsulated fungicide. The data obtained from in vitro TEB release were fitted to different mathematical models. It was shown that the release profiles of TEB could be best explained by the Zero-order, Higuchi, and Hixson-Crowell models. The antifungal activity of the P3HB/TEB microparticles against phytopathogenic fungi Fusarium moniliforme and Fusarium solani was demonstrated by in vitro tests conducted in Petri dishes. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated into P3HB microparticles to construct slow-release formulations.


Subject(s)
Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Triazoles/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Emulsions/chemistry , Fungicides, Industrial/pharmacokinetics , Fusarium/pathogenicity , Hydroxybutyrates/chemistry , Models, Theoretical , Particle Size , Polyesters/chemistry , Triazoles/chemistry
19.
Appl Microbiol Biotechnol ; 103(1): 225-237, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30367183

ABSTRACT

The present study addresses the synthesis and properties of polyhydroxyalkanoates (PHA) of different composition synthesized by Cupriavidus eutrophus B-10646 using glycerol as a carbon substrate. Poly(3-hydroxybutyrate) [P(3HB)] was effectively synthesized in fed-batch culture in a 30-L fermenter on glycerol of various purification degrees, with 99.5, 99.7, and 82.1% content of the main component. Purified glycerol (99.7%) was used for 150-L pilot scale fermentation. The total biomass and P(3HB) concentration reached 110 and 85.8 g/L, respectively, after 45 h of fed-batch fermentation. An average volumetric productivity of P(3HB) was 1.83 g/(L h). The degree of crystallinity and molecular weight of P(3HB) synthesized on glycerol were lower than and temperature characteristics were the same as those of P(3HB) synthesized on sugars.


Subject(s)
Cupriavidus necator/metabolism , Glycerol/metabolism , Industrial Microbiology/methods , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/metabolism , Batch Cell Culture Techniques , Bioreactors , Carbon/metabolism , Cupriavidus necator/growth & development , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Industrial Microbiology/instrumentation , Molecular Weight , Pilot Projects , Polyesters/chemistry , Polyesters/metabolism
20.
Plant Physiol Biochem ; 132: 400-407, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30286405

ABSTRACT

The study investigates toxic effects of the fungicide tebuconazole (TEB) on Fusarium-infected wheat (Triticum aestivum) plants based on the morphological characteristics of root apices and changes in the integrated parameters of redox homeostasis, including the contents of free proline and products of peroxidation of proteins (carbonylated proteins, CP) and lipids (malondialdehyde, MDA) in roots. In two-day-old wheat sprouts infected by Fusarium graminearum, the levels of proline, CP, and border cells of root apices are higher than in roots of uninfected sprouts by a factor of 1.4, 8.0, and 3, respectively. The triazole fungicide tebuconazole (TEB) at the concentrations of 0.01, 0.10, and 1.00 µg ml-1 of medium causes a dose-dependent decrease in the number of border cells. The study of the effects of TEB and fusarium infection on wheat plants in a 30-day experiment shows that the effect of the fungicide TEB on redox homeostasis in wheat roots varies depending on the plant growth stage and is significantly different in ecosystems with soil and plants infected by Fusarium phytopathogens. The study of the morphology of root apices shows that the toxic effects of TEB and fusarium infection are manifested in the destructive changes in root apices and the degradation of the root tip mantle.


Subject(s)
Fungicides, Industrial/toxicity , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Roots/microbiology , Triazoles/toxicity , Triticum/microbiology , Fusarium/drug effects , Germination/drug effects , Malondialdehyde/metabolism , Plant Roots/anatomy & histology , Plant Roots/drug effects , Proline/metabolism , Protein Carbonylation/drug effects , Seeds/drug effects , Seeds/growth & development , Seeds/microbiology , Soil , Triticum/anatomy & histology , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...