Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.453
Filter
1.
Sci China Life Sci ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39115728

ABSTRACT

Ischemic stroke is a leading cause of death and disability worldwide. Inflammatory response after stroke determines the outcome of ischemic injury. A recent study has reported an efficient method, epidural arterial implantation (EAI), for accelerating interstitial fluid (ISF) drainage, which provides a promising strategy to clear pro-inflammatory cytokines in the brain extracellular space (ECS). In this study, the method of EAI was modified (m-EAI) to control its function of accelerating the ISF drainage at different time points following ischemic attack. The neuroprotective effect of m-EAI on ischemic stroke was evaluated with the transient middle cerebral artery occlusion (tMCAO) rat model. The results demonstrated the accumulation of IL-1ß, IL-6, and TNF-α was significantly decreased by activating m-EAI at 7 d before and immediately after ischemic attack in tMCAO rats, accompanied with decreased infarct volume and improved neurological function. This study consolidates the hypothesis of exacerbated ischemic damage by inflammatory response and provides a new perspective to treat encephalopathy via brain ECS. Further research is essential to investigate whether m-EAI combined with neuroprotective drugs could enhance the therapeutic effect on ischemic stroke.

2.
J Control Release ; 373: 905-916, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39089506

ABSTRACT

Herein, we synthesized and characterized gadolinium-based hyperbranched polymers, POADGd and PODGd, through RAFT polymerization as magnetic resonance imaging (MRI) contrast agents for detecting fibrosis. POADGd and PODGd contain biocompatible short-chain OEGMA to prolong blood circulation, and they can be decomposed in response to ROS after MRI examination to prevent potential accumulation. The relaxivities of POADGd and PODGd are 9.81 mM-1 s-1 and 9.58 mM-1 s-1 respectively, which are significantly higher than that of DTPA-Gd, a clinically used agent (3.74 mM-1 s-1). In comparison with PODGd, POADGd can specifically target allysine in fibrosis tissues through its oxyamine groups. Therefore, it displays a sharp spatial resolution and a high signal-to-noise ratio in the liver and lung fibrosis tissue at a field strength of 3.0 T or 7.0 T, and the morphology of these fibrosis tissues is accurately delineated. Our MRI diagnosis results based on POADGd are highly aligned with those from pathological examinations, while MRI diagnosis could avoid invasive biopsy. In addition, POADGd shows excellent biosafety and low toxicity. Therefore, POADGd could be applied to non-invasively and accurately diagnose liver and lung fibrosis diseases.

3.
Cancer Med ; 13(15): e70090, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109577

ABSTRACT

BACKGROUND: Non-small-cell lung cancer (NSCLC) often presents at later stages, typically associated with poor prognosis. Autophagy genes play a role in the progression of tumors. This study investigated the clinical relevance, prognostic value, and biological significance of RBBP4 in NSCLC. METHODS: We assessed RBBP4 expression using the GSE30219 and TCGA NSCLC datasets and NSCLC cells, exploring its links with clinical outcomes, tumor immunity, and autophagy genes through bioinformatics analysis after transcriptome sequencing of RBBP4-knockdown and control PC9 cells. We identified differentially expressed genes (DEGs) and conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction network analyses. The significance of autophagy-related DEGs was evaluated for diagnosis and prognosis using the GSE30219 dataset. Experiments both in vivo and in vitro explored the biological mechanisms behind RBBP4-mediated autophagic cell death in NSCLC. RESULTS: RBBP4 overexpression in NSCLC correlates with a poorer prognosis. Eighteen types of immune cell were significantly enriched in cultures that had low RBBP4 expression compared high expression. DEGs associated with RBBP4 are enriched in autophagy pathways. Transcriptomic profiling of the PC9 cell line identified autophagy-related DEGs associated with RBBP4 that exhibited differential expression in NSCLC, suggesting prognostic applications. In vitro experiments demonstrated that RBBP4 knockdown induced autophagy and apoptosis in PC9 cells, promoting cell death, which was inhibited by 3-MA. In vivo, targeted siRNA against RBBP4 significantly reduced tumor development in PC9 cell-injected nude mice, elevating autophagy-related protein levels and inducing apoptosis and necrosis in tumor tissues. CONCLUSION: In NSCLC, RBBP4 upregulation correlates with poor prognosis and altered immunity. Its knockdown induces autophagic cell death in NSCLC cells. These results indicate RBBP4 as a potential NSCLC diagnostic marker and its autophagy modulation as a prospective therapeutic target.


Subject(s)
Autophagy , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Retinoblastoma-Binding Protein 4 , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/mortality , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Autophagy/genetics , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Mice , Retinoblastoma-Binding Protein 4/genetics , Retinoblastoma-Binding Protein 4/metabolism , Cell Line, Tumor , Mice, Nude , Male , Gene Expression Profiling , Female , Computational Biology/methods , Protein Interaction Maps , Xenograft Model Antitumor Assays
4.
Chin Med J (Engl) ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056160

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and joint destruction. Iguratimod (IGU) is a novel conventional synthetic disease-modifying antirheumatic drugs (csDMARD) with good efficacy and safety for the treatment of active RA in China and Japan. However, the long-term effects of IGU on the progression of bone destruction or radiographic progression in patients with active RA remain unknown. We aimed to investigate the efficacy and safety of iguratimod (IGU), a combination of methotrexate (MTX) and IGU, and IGU in patients with active rheumatoid arthritis (RA) who were naïve to MTX. METHODS: This multicenter, double-blind, randomized, non-inferiority clinical trial was conducted at 28 centers for over 52 weeks in China. In total, 911 patients were randomized (1:1:1) to receive MTX monotherapy (10-15 mg weekly, n = 293), IGU monotherapy (25 mg twice daily, n = 297), or IGU + MTX (10-15 mg weekly for MTX and 25 mg twice daily for IGU, n = 305) for 52 weeks. The patients' clinical characteristics, Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), disease activity score in 28 joints-C-reactive protein (DAS28-CRP) level, and erythrocyte sedimentation rate (DAS28-ESR) were assessed at baseline. The primary endpoints were the proportion of patients with ≥20% improvement according to the American College of Rheumatology (ACR20) response and changes in the van der Heijde-modified total Sharp score (vdH-mTSS) at week 52. RESULTS: The proportions of patients achieving an ACR20 response at week 52 were 77.44%, 77.05 %, and 65.87% for IGU monotherapy, IGU + MTX, and MTX monotherapy, respectively. The non-inferiority of IGU monotherapy to MTX monotherapy was established with the ACR20 (11.57%; 95% confidence interval [CI], 4.35-18.79%; P <0.001) and vdH-mTSS (-0.37; 95% CI, -1.22-0.47; P = 0.022). IGU monotherapy was also superior to MTX monotherapy in terms of ACR20 (P = 0.002) but not the vdH-mTSS. The superiority of IGU + MTX over MTX monotherapy was confirmed in terms of the ACR20 (11.18%; 95% CI, 3.99-18.37%; P = 0.003), but not in the vdH-mTSS (-0.68; 95% CI, -1.46-0.11; P = 0.091). However, the difference in the incidence rates of adverse events was not statistically significant. CONCLUSIONS: IGU monotherapy/IGU + MTX showed a more favorable clinical response than did MTX monotherapy. IGU may have some clinical benefits over MTX in terms of radiographic progression, implying that IGU may be considered as an initial therapeutic option for patients with active RA. TRIAL REGISTRATION: https://classic.clinicaltrials.gov/, NCT01548001.

5.
Sci Total Environ ; 946: 174453, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964410

ABSTRACT

BACKGROUND: Despite evidence linking fine particulate matter (PM2.5) to cardiometabolic multimorbidity (CMM), the impact of its components remains unclear. Socioeconomic status (SES) and regional disparities may confound their association. We aim to evaluate the associations between PM2.5 components and CMM and explore how socioeconomic status and regional disparities affect these relationships. METHODS: We recruited 108,941 participants aged 35-76 years from ten cities in eastern China. Individual exposure was assessed using Tracking Air Pollution in China (TAP) data, including PM2.5 and five components: ammonium (NH4+), black carbon (BC), nitrates (NO3-), organic matter (OM), and sulfates (SO42-). Generalized linear models and quantile g-computation models were employed to quantify the effects of PM2.5 components on CMM and to identify key components. Stratified analyses were performed to investigate the modifying effect of SES and regional disparities. RESULTS: For each increase in interquartile range (IQR), BC (odds ratio [OR] 1.37, 95 % CI 1.29-1.47), OM (1.38, 1.29-1.48), NH4+ (1.31, 1.21-1.40), NO3- (1.34, 1.25-1.44), and SO42- (1.28, 1.20-1.38) were positively associated with CMM. Joint exposure to five components was significantly positively associated with CMM (OR: 1.27, 95 % CI: 1.21-1.33), with SO42- having the highest estimated weight, followed by NO3- and BC. These associations were stronger for participants from low socio-economic status and poor regions. CONCLUSION: In summary, we found a stronger hazard effect of PM2.5 and its components on CMM, compared to those suffering from CMDs, particularly among participants with low socioeconomic status and in poor regions. SO42- may be a primary contributor to the association between PM2.5 components and CMM. These findings underscore the importance of prioritizing CMM and targeting SO42-related pollution sources in health policies, particularly amid China's aging population, reducing environmental health inequalities is critical.


Subject(s)
Air Pollutants , Air Pollution , Environmental Exposure , Multimorbidity , Particulate Matter , Social Class , Particulate Matter/analysis , China/epidemiology , Humans , Middle Aged , Aged , Air Pollutants/analysis , Male , Air Pollution/statistics & numerical data , Female , Adult , Environmental Exposure/statistics & numerical data , Cardiovascular Diseases/epidemiology
6.
Article in English | MEDLINE | ID: mdl-38996754

ABSTRACT

Diabetic nephropathy (DN) remains the primary cause of end-stage renal disease (ESRD), warranting equal attention and separate analysis of glomerular, tubular, and interstitial lesions in its diagnosis and intervention. This study aims to identify the specific proteomics characteristics of DN, and assess changes in the biological processes associated with DN. 5 patients with DN and 5 healthy kidney transplant donor control individuals were selected for analysis. The proteomic characteristics of glomeruli, renal tubules, and renal interstitial tissue obtained through laser capture microscopy (LCM) were studied using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Significantly, the expression of multiple heat shock proteins (HSPs), tubulins, and heterogeneous nuclear ribonucleoproteins (hnRNPs) in glomeruli and tubules was significantly reduced. Differentially expressed proteins (DEPs) in the glomerulus showed significant enrichment in pathways related to cell junctions and cell movement, including the regulation of actin cytoskeleton and tight junction. DEPs in renal tubules were significantly enriched in glucose metabolism-related pathways, such as glucose metabolism, glycolysis/gluconeogenesis, and the citric acid cycle. Moreover, the glycolysis/gluconeogenesis pathway was a co-enrichment pathway in both DN glomeruli and tubules. Notably, ACTB emerged as the most crucial protein in the protein-protein interaction (PPI) analysis of DEPs in both glomeruli and renal tubules. In this study, we delve into the unique proteomic characteristics of each sub-region of renal tissue. This enhances our understanding of the potential pathophysiological changes in DN, particularly the potential involvement of glycolysis metabolic disorder, glomerular cytoskeleton and cell junctions. These insights are crucial for further research into the identification of disease biomarkers and the pathogenesis of DN.


Subject(s)
Diabetic Nephropathies , Kidney , Laser Capture Microdissection , Proteome , Proteomics , Tandem Mass Spectrometry , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Proteomics/methods , Laser Capture Microdissection/methods , Male , Middle Aged , Female , Tandem Mass Spectrometry/methods , Kidney/chemistry , Kidney/metabolism , Kidney/pathology , Proteome/analysis , Proteome/metabolism , Chromatography, High Pressure Liquid/methods , Adult , Aged
7.
Plant Methods ; 20(1): 110, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044226

ABSTRACT

BACKGROUND: Since traditional germination test methods have drawbacks such as slow efficiency, proneness to error, and damage to seeds, a non-destructive testing method is proposed for full-process germination of radish seeds, which improves the monitoring efficiency of seed quality. RESULTS: Based on YOLOv8n, a lightweight test model YOLOv8-R is proposed, where the number of parameters, the amount of calculation, and size of weights are significantly reduced by replacing the backbone network with PP-LCNet, the neck part with CCFM, the C2f of the neck part with OREPA, the SPPF with FocalModulation, and the Detect of the head part with LADH. The ablation test and comparative test prove the performance of the model. With adoption of germination rate, germination index, and germination potential as the three vitality indicators, the seed germination phenotype collection system and YOLOv8-R model are used to analyze the full time-series sequence effects of different ZnO NPs concentrations on germination of radish seeds under varying degrees of salt stress. CONCLUSIONS: The results show that salt stress inhibits the germination of radish seeds and that the inhibition effect is more obvious with the increased concentration of NaCl solution; in cultivation with deionized water, the germination rate of radish seeds does not change significantly with increased concentration of ZnO NPs, but the germination index and germination potential increase initially and then decline; in cultivation with NaCl solution, the germination rate, germination potential and germination index of radish seeds first increase and then decline with increased concentration of ZnO NPs.

8.
Hortic Res ; 11(7): uhae155, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39005999

ABSTRACT

Stable genetic transformation of peach [Prunus persica (L.) Batsch] still faces many technical challenges, and existing transient expression methods are limited by tissue type or developmental stage, making it difficult to conduct functional analysis of genes regulating shoot growth. To overcome this dilemma, we developed a three-step method for efficient analysis of gene functions during peach seedling growth and development. This method resulted in transformation frequencies ranging from 48 to 87%, depending on the gene. From transformation of germinating seeds to phenotyping of young saplings took just 1.5 months and can be carried out any time of year. To test the applicability of this method, the function of three tree architecture-related genes, namely PpPDS, PpMAX4, and PpWEEP, and two lateral root-related genes, PpIAA14-1 and -2, were confirmed. Since functional redundancy can challenge gene functional analyses, tests were undertaken with the growth-repressor DELLA, which has three homologous genes, PpDGYLA (DG), PpDELLA1 (D1), and -2 (D2), in peach that are functionally redundant. Silencing using a triple-target vector (TRV2-DG-D1-D2) resulted in transgenic plants taller than those carrying just TRV2-DG or TRV2. Simultaneously silencing the three DELLA genes also attenuated the stature of two dwarf genotypes, 'FHSXT' and 'HSX', which normally accumulate DELLA proteins. Our study provides a method for the functional analysis of genes in peach and can be used for the study of root, stem, and leaf development. We believe this method can be replicated in other woody plants.

9.
J Nanobiotechnology ; 22(1): 423, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026367

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease marked by synovitis and cartilage destruction. The active compound, icariin (ICA), derived from the herb Epimedium, exhibits potent anti-inflammatory properties. However, its clinical utility is limited by its water insolubility, poor permeability, and low bioavailability. To address these challenges, we developed a multifunctional drug delivery system-adipose-derived stem cells-exosomes (ADSCs-EXO)-ICA to target active macrophages in synovial tissue and modulate macrophage polarization from M1 to M2. High-performance liquid chromatography analysis confirmed a 92.4 ± 0.008% loading efficiency for ADSCs-EXO-ICA. In vitro studies utilizing cellular immunofluorescence (IF) and flow cytometry demonstrated significant inhibition of M1 macrophage proliferation by ADSCs-EXO-ICA. Enzyme-linked immunosorbent assay, cellular transcriptomics, and real-time quantitative PCR indicated that ADSCs-EXO-ICA promotes an M1-to-M2 phenotypic transition by reducing glycolysis through the inhibition of the ERK/HIF-1α/GLUT1 pathway. In vivo, ADSCs-EXO-ICA effectively accumulated in the joints. Pharmacodynamic assessments revealed that ADSCs-EXO-ICA decreased cytokine levels and mitigated arthritis symptoms in collagen-induced arthritis (CIA) rats. Histological analysis and micro computed tomography confirmed that ADSCs-EXO-ICA markedly ameliorated synovitis and preserved cartilage. Further in vivo studies indicated that ADSCs-EXO-ICA suppresses arthritis by promoting an M1-to-M2 switch and suppressing glycolysis. Western blotting supported the therapeutic efficacy of ADSCs-EXO-ICA in RA, confirming its role in modulating macrophage function through energy metabolism regulation. Thus, this study not only introduces a drug delivery system that significantly enhances the anti-RA efficacy of ADSCs-EXO-ICA but also elucidates its mechanism of action in macrophage function inhibition.


Subject(s)
Adipose Tissue , Arthritis, Rheumatoid , Exosomes , Flavonoids , Macrophages , Animals , Flavonoids/pharmacology , Flavonoids/chemistry , Exosomes/metabolism , Rats , Macrophages/drug effects , Macrophages/metabolism , Adipose Tissue/cytology , Male , Arthritis, Experimental/drug therapy , Rats, Sprague-Dawley , Drug Delivery Systems/methods , Stem Cells/metabolism , Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects
10.
Acta Biomater ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025389

ABSTRACT

Recombinant adeno-associated viruses (rAAVs) have been extensively studied for decades as carriers for delivering therapeutic genes. However, designing rAAV vectors with selective tropism for specific cell types and tissues has remained challenging. Here, we introduce a strategy for redirecting rAAV by attaching nanobodies with desired tropism at specific sites, effectively replacing the original tropism. To demonstrate this concept, we initially modified the genetic code of rAAV2 to introduce an azido-containing unnatural amino acid at a precise site within the capsid protein. Following a screening process, we identified a critical site (N587+1) where the introduction of unnatural amino acid eliminated the natural tropism of rAAV2. Subsequently, we successfully redirected rAAV2 by conjugating various nanobodies at the N587+1 site, using click and SpyTag-Spycatcher chemistries to form nanobody-AAV conjugates (NACs). By investigating the relationship between NACs quantity and effect and optimizing the linker between rAAV2 and the nanobody using a cathepsin B-susceptible valine-citrulline (VC) dipeptide, we significantly improved gene delivery efficiency both in vitro and in vivo. This enhancement can be attributed to the facilitated endosomal escape of rAAV2. Our method offers an exciting avenue for the rational modification of rAAV2 as a retargeting vehicle, providing a convenient platform for precisely engineering various rAAV2 vectors for both basic research and therapeutic applications. STATEMENT OF SIGNIFICANCE: AAVs hold great promise in the treatment of genetic diseases, but their clinical use has been limited by off-target transduction and efficiency. Here, we report a strategy to construct NACs by conjugating a nanobody or scFv to an rAAV capsid site, specifically via biorthogonal click chemistry and a spy-spycatcher reaction. We explored the structure-effect and quantity-effect relationships of NACs and then optimized the transduction efficiency by introducing a valine-citrulline peptide linker. This approach provides a biocompatible method for rational modification of rAAV as a retargeting platform without structural disruption of the virus or alteration of the binding capacity of the nanobody, with potential utility across a broad spectrum of applications in targeted imaging and gene delivery.

11.
Nat Commun ; 15(1): 5943, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009597

ABSTRACT

Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6ßrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.


Subject(s)
Disease Models, Animal , Drug Repositioning , Retinitis Pigmentosa , Animals , Mice , Dogs , Retinitis Pigmentosa/drug therapy , Retinitis Pigmentosa/genetics , Mutation , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Mice, Knockout , Leber Congenital Amaurosis/drug therapy , Leber Congenital Amaurosis/genetics , Bromocriptine/pharmacology , Bromocriptine/therapeutic use , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , Humans , Drug Therapy, Combination , Mice, Inbred C57BL , Retinal Cone Photoreceptor Cells/drug effects , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Female , Cyclic AMP/metabolism , Retinal Degeneration/drug therapy , Retinal Degeneration/genetics , Male , Calcium/metabolism
12.
Urology ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019332

ABSTRACT

OBJECTIVE: To investigate if use of the Crowd-Sourced Assessment of Technical Skills (CSATS) platform and video peer review with constructive feedback is associated with improvement in technical skill and patient outcomes for robotic-assisted laparoscopic prostatectomy (RALP). METHODS: Five fellowship-trained urologists voluntarily submitted RALP cases for CSATS Global Evaluative Assessment of Robotic Skills (GEARS) scoring and expert narrative review between April 15, 2022-April 30, 2023. Surgeon-selected and randomly selected cases were reviewed. Surgeons underwent local peer review of videos with constructive feedback. Change in GEARS scores and frequency of postoperative outcomes over the 12-month periods before and during the study were analyzed in logistic regression models. Bias was assessed with sensitivity analysis comparing surgeon-selected to randomly selected cases. RESULTS: GEARS scores for randomly selected vs surgeon-selected cases did not differ significantly. Overall GEARS score correlated positively with annual surgical RALP volume (r = 0.39, P = .003) and negatively with years in practice (r = -0.34, P = .01). After adjusting for confounders, there was no significant improvement in overall GEARS Score (0.01 ± 0.02/month, P = .48); but likelihood of sepsis (Odds Ratio 0.07, 95% CI 0.01-1.00, P = .05) and pelvic fluid collection (Odds Ratio 0.09, 95% CI 0.01-0.99, P = .049) were significantly decreased during the intervention period (n = 165) compared to the prior 12months (n = 144). No outcome increased in likelihood (P > .05). CONCLUSION: Integration of CSATS and local video peer review is associated with significant improvement in patient outcomes after RALP, despite no significant change in surgeons' GEARS scores. This is the first study demonstrating improvement in patient RALP outcomes after implementation of such a paradigm in practicing surgeons.

13.
Food Chem ; 458: 139838, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38959792

ABSTRACT

Side streams from milling result in significant food wastage. While highly nutritious, their harmful elements raise concerns. To repurpose these side streams safely, this study designed a dry fractionation technique for anthocyanin-rich purple bread wheat. Four fractions - from inner to outer layers: flour, middlings, shorts and bran - alongside whole-wheat flour were obtained and examined by microstructure, antioxidant activity, anthocyanin profiles, and essential and harmful minerals. Across the four investigated cultivars, both anthocyanin content and antioxidant capacity increased from inner to outer layers. In comparison to flour, cyanidin-3-glucoside concentrations in middlings, shorts and bran were 2-5 times, 3-9 times, and 6-19 times, respectively. Concentrations of Cr, Ni, Sr and Ba progressively increased from inner to outer layers, Pb and Se exhibited uniform distribution, while Al was more concentrated in inner layers. These findings indicate that the fractionation technique is effective in deriving valuable ingredients from underexploited side streams, especially bran.

14.
Chem Sci ; 15(27): 10547-10555, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38994415

ABSTRACT

In this work, we present a design concept of introducing linear structures into the orthogonal configuration of 9,9'-spirobifluorene (SBF), aiming to enhance carrier mobilities while maintaining high triplet energies (E T), which are two critical parameters for optimizing host materials in organic light-emitting diodes (OLEDs). To validate our proposed design, four pivotal model molecules of 1,4-diaryl SBFs were synthesized via interannular C-H arylation of bi(hetero)aryl-2-formaldehydes, a task challenging to accomplish using previous synthetic methodologies. The orthogonal configuration and the steric hindrance of SBF lead to high E T through the conjugation breaking at C1 and C4 positions, rendering 1,4-diaryl SBFs suitable as universal pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent OLEDs (PhOLEDs). Meanwhile, the linearity and relatively good planarity of the para-quaterphenyl structure promote high carrier mobilities through orderly intermolecular packing. The synergistic effects of linearity and orthogonality in 1-(para-biphenyl)-4-phenyl-SBF result in exceptional device performance with external quantum efficiencies (EQEs) of 26.0%, 26.1%, and 22.5% for RGB PhOLEDs, respectively. Notably, the green PhOLED exhibits minimal efficiency roll-off, positioning its device performances among the state-of-the-art in PHC hosts.

15.
Br J Cancer ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997406

ABSTRACT

BACKGROUND: The prognostic and therapeutic implications of endothelial cells (ECs) heterogeneity in prostate cancer (PCa) are poorly understood. METHODS: We investigated associations of EC heterogeneity with PCa recurrence and castration resistance in 8 bulk transcriptomic and 4 single-cell RNA-seq cohorts. A recurrence-associated EC (RAEC) signature was constructed by comparing 11 machine learning algorithms through nested cross-validation. Functional relevances of RAEC-specific genes were also tested. RESULTS: A subset of ECs was significantly associated with recurrence in primary PCa and named RAECs. RAECs were characteristic of tip and immature cells and were enriched in migration, angiogenesis, and collagen-related pathways. We then developed an 18-gene RAEC signature (RAECsig) representative of RAECs. Higher RAECsig scores independently predicted tumor recurrence and performed better or comparably compared to clinicopathological factors and commercial gene signatures in multiple PCa cohorts. Of the 18 RAECsig genes, FSCN1 was upregulated in ECs from PCa with higher Gleason scores; and the silencing of FSCN1, TMEME255B, or GABRD in ECs either attenuated tube formation or inhibited PCa cell proliferation. Finally, higher RAECsig scores predicted castration resistance in both primary and castration-resistant PCa. CONCLUSION: This study establishes an endothelial signature that links a subset of ECs to prostate cancer recurrence and castration resistance.

16.
mBio ; : e0154924, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953350

ABSTRACT

Metabolism in host cells can be modulated after viral infection, favoring viral survival or clearance. Here, we report that lipid droplet (LD) synthesis in host cells can be modulated by yin yang 1 (YY1) after porcine reproductive and respiratory syndrome virus (PRRSV) infection, resulting in active antiviral activity. As a ubiquitously distributed transcription factor, there was increased expression of YY1 upon PRRSV infection both in vitro and in vivo. YY1 silencing promoted the replication of PRRSV, whereas YY1 overexpression inhibited PRRSV replication. PRRSV infection led to a marked increase in LDs, while YY1 knockout inhibited LD synthesis, and YY1 overexpression enhanced LD accumulation, indicating that YY1 reprograms PRRSV infection-induced intracellular LD synthesis. We also showed that the viral components do not colocalize with LDs during PRRSV infection, and the effect of exogenously induced LD synthesis on PRRSV replication is nearly lethal. Moreover, we demonstrated that YY1 affects the synthesis of LDs by regulating the expression of lipid metabolism genes. YY1 negatively regulates the expression of fatty acid synthase (FASN) to weaken the fatty acid synthesis pathway and positively regulates the expression of peroxisome proliferator-activated receptor gamma (PPARγ) to promote the synthesis of LDs, thus inhibiting PRRSV replication. These novel findings indicate that YY1 plays a crucial role in regulating PRRSV replication by reprogramming LD synthesis. Therefore, our study provides a novel mechanism of host resistance to PRRSV and suggests potential new antiviral strategies against PRRSV infection.IMPORTANCEPorcine reproductive and respiratory virus (PRRSV) has caused incalculable economic damage to the global pig industry since it was first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. It is well known that viruses are parasitic pathogens, and the completion of their replication life cycle is highly dependent on host cells. A better understanding of host resistance to PRRSV infection is essential for developing safe and effective strategies to control PRRSV. Here, we report a crucial host antiviral molecule, yin yang 1 (YY1), which is induced to be expressed upon PRRSV infection and subsequently inhibits virus replication by reprogramming lipid droplet (LD) synthesis through transcriptional regulation. Our work provides a novel antiviral mechanism against PRRSV infection and suggests that targeting YY1 could be a new strategy for controlling PRRSV.

17.
Org Lett ; 26(29): 6164-6168, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39018122

ABSTRACT

Friedel-Crafts acylation is usually promoted by Lewis acids or Brønsted acids. In this work, a novel acylation of arenes with a highly electrophilic acylphosphonium salt was developed. The alkylation of the phosphorus atom in acylphosphines generated a neutral trivalent phosphine as a good leaving group and triggered the high electrophilicity of the acylphosphonium salt. Using acylphosphonium salts, 38 examples of acylations of arenes, alcohols, phenol, amines, thioalcohols, and even polystyrene were achieved. The acylation of arenes was monitored by 31P nuclear magnetic resonance and disclosed the existence of an acylphosphonium intermediate. The electrophilic capability of the acylphosphonium salt was ranked by the following series of controlled reactions: AcPR+ ≈ AcOTf > AcI > AcCl.

18.
ChemSusChem ; : e202401271, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085053

ABSTRACT

CuS have received widespread attention for application as anode materials in sodium-ion batteries due to their potent capabilities and eco-friendly properties. However, it is a challenge to achieve a high rate capability and long cycle stability owing to the heterogeneous transfer of sodium ions during charge-discharge, the interior poor electron conductivity and repeated volumetric expansion of copper sulfide. In this study, Sb-doped CuS hollow nanocubes coated with carbon shells (Sb-CuS@C) was designed and constructed as anode nanomaterials in sodium ion batteries. Thanks to the intrinsic good electron conductivity and chemical stability of carbon shells, Sb-CuS@C possesses a higher overall electron transfer as anode material, avoids agglomeration and structural destruction during the cycling. As a result, the synthesized Sb-CuS@C achieved an excellent reversible capacity of 595 mA h g-1 after 100 cycles at 0.5 A g-1 and a good rate capability of 340 mA h g-1 at a higher 10 A g-1. DFT calculations clarify that the uniformly doped Sb would act as active sodiophilic nucleation sites to help adsorbing Na+ during discharging and leading uniform sodium deposition. This work provides a new insight into the structural and componential modification for common transition-metal sulfides towards application as anode materials in SIB.

19.
Proc Natl Acad Sci U S A ; 121(30): e2401091121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39024109

ABSTRACT

Achieving ligand subtype selectivity within highly homologous subtypes of G-protein-coupled receptor (GPCR) is critical yet challenging for GPCR drug discovery, primarily due to the unclear mechanism underlying ligand subtype selectivity, which hampers the rational design of subtype-selective ligands. Herein, we disclose an unusual molecular mechanism of entropy-driven ligand recognition in cannabinoid (CB) receptor subtypes, revealed through atomic-level molecular dynamics simulations, cryoelectron microscopy structure, and mutagenesis experiments. This mechanism is attributed to the distinct conformational dynamics of the receptor's orthosteric pocket, leading to variations in ligand binding entropy and consequently, differential binding affinities, which culminate in specific ligand recognition. We experimentally validated this mechanism and leveraged it to design ligands with enhanced or ablated subtype selectivity. One such ligand demonstrated favorable pharmacokinetic properties and significant efficacy in rodent inflammatory analgesic models. More importantly, it is precisely due to the high subtype selectivity obtained based on this mechanism that this ligand does not show addictive properties in animal models. Our findings elucidate the unconventional role of entropy in CB receptor subtype selectivity and suggest a strategy for rational design of ligands to achieve entropy-driven subtype selectivity for many pharmaceutically important GPCRs.


Subject(s)
Entropy , Molecular Dynamics Simulation , Receptors, G-Protein-Coupled , Ligands , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Humans , Protein Binding , Mice , Cryoelectron Microscopy , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/chemistry , Binding Sites
20.
Ren Fail ; 46(2): 2363589, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38874093

ABSTRACT

PURPOSE: To investigate the dietary nutrient intake of Maintenance hemodialysis (MHD) patients, identify influencing factors, and explore the correlation between dietary nutrient intake and nutritional and disease control indicators. METHODS: This was a multicenter cross-sectional study. A dietary survey was conducted using a three-day dietary record method, and a self-designed diet management software was utilized to calculate the daily intake of dietary nutrients. The nutritional status and disease control indicators were assessed using subjective global assessment, handgrip strength, blood test indexes, and dialysis adequacy. RESULTS: A total of 382 MHD patients were included in this study. Among them, 225 (58.9%) and 233 (61.0%) patients' protein and energy intake did not meet the recommendations outlined in the National Kidney Foundation's Kidney Disease Outcomes Quality Initiative Clinical Practice Guideline for Nutrition in Chronic Kidney Disease (2020 update). The average protein and energy intake for these patients were 0.99 ± 0.32 g/kg/d and 29.06 ± 7.79 kcal/kg/d, respectively. Multiple linear regression analysis showed that comorbidity-diabetes had a negative influence on normalized daily energy intake (nDEI = DEI / ideal body weight) (B = -2.880, p = 0.001) and normalized daily protein intake (nDPI = DPI / ideal body weight) (B = -0.109, p = 0.001). Pearson correlation analysis revealed that dietary DPI (r = -0.109, p < 0.05), DEI (r = -0.226, p < 0.05) and phosphorus (r = -0.195, p < 0.001) intake were statistically correlated to Kt/V; dietary nDPI (r = 0.101, p < 0.05) and sodium (r = -0.144, p < 0.001) intake were statistically correlated to serum urea nitrogen; dietary DPI (r = 0.200, p < 0.001), DEI (r = 0.241, p < 0.001), potassium (r = 0.129, p < 0.05), phosphorus (r = 0.199, p < 0.001), and fiber (r = 0.157, p < 0.001) intake were statistically correlated to serum creatinine; dietary phosphorus (r = 0.117, p < 0.05) and fiber (r = 0.142, p < 0.001) intake were statistically correlated to serum phosphorus; dietary nDPI (r = 0.125, p < 0.05), DPI (r = 0.135, p < 0.05), nDEI (r = 0.116, p < 0.05), DEI (r = 0.125, p < 0.05), potassium (r = 0.148, p < 0.001), and phosphorus (r = 0.156, p < 0.001) intake were statistically correlated to subjective global assessment scores; dietary nDPI (r = 0.215, p < 0.001), DPI (r = 0.341, p < 0.001), nDEI (r = 0.142, p < 0.05), DEI (r = 0.241, p < 0.001), potassium (r = 0.166, p < 0.05), phosphorus (r = 0.258, p < 0.001), and fiber (r = 0.252, p < 0.001) intake were statistically correlated to handgrip strength in males; dietary fiber (r = 0.190, p < 0.05) intake was statistically correlated to handgrip strength in females. CONCLUSIONS: The dietary nutrient intake of MHD patients need improvement. Inadequate dietary nutrient intake among MHD patients could have a detrimental effect on their blood test indexes and overall nutritional status. It is crucial to address and optimize the dietary intake of nutrients in this patient population to enhance their health outcomes and well-being.


Subject(s)
Energy Intake , Nutritional Status , Renal Dialysis , Humans , Cross-Sectional Studies , Male , Female , Middle Aged , Aged , Dietary Proteins/administration & dosage , Adult , Linear Models , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/physiopathology , Hand Strength , Diet Records , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/diet therapy , Renal Insufficiency, Chronic/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...