Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 19(2)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33669933

ABSTRACT

Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, ß2 and ß4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.


Subject(s)
Cobra Neurotoxin Proteins/pharmacology , Conotoxins/pharmacology , Glioma/drug therapy , Nicotinic Antagonists/pharmacology , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclooxygenase Inhibitors/pharmacology , Glioma/pathology , Lipoxygenase Inhibitors/pharmacology , Nicotine/pharmacology , Rats , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Time Factors
2.
Immunobiology ; 226(1): 152047, 2021 01.
Article in English | MEDLINE | ID: mdl-33340828

ABSTRACT

Polymorphonuclear neutrophilic granulocytes (PMNs) are extremely important in defense of the organism against infections and in inflammatory processes including neuroinflammation and pain sensation. Different subtypes of nicotinic acetylcholine receptors (nAChRs) are involved in modulation of PMN activities. Earlier we determined expression of α2-7, α9, ß3, ß4 subunits and regulatory role of α7 and α3ß2 nAChR subtypes in functions of inflammatory PMNs. Other authors detected mRNA of α9 subunit in bone marrow neutrophils (BM-PMNs). Murine BM-PMNs coming out from the bone marrow, where they develop, to blood were characterized as mature. There was no data for α10 and for the presence of functionally active α9α10 nAChRs in BM-PMNs. Here we detected for the first time mRNA expression of the α10 nAChR subunit in BM-PMNs and confirmed the expression of mRNA for α9 nAChR. With the help of α-conotoxins RgIA and Vc1.1, highly selective antagonists of α9α10 nAChRs, we have revealed participation of α9 and/or α9α10 nAChRs in regulation of cytosolic Ca2+ concentration, cell adhesion, and in generation of reactive oxygen species (ROS). Nicotine, choline, RgIA, and Vc1.1 induced Ca2+ transients in BM-PMNs, enhanced cell adhesiveness and decreased production of ROS indicating involvement of α9, possibly co-assembled with α10, nAChRs in the BM-PMN activity for recruitment and cytotoxicity.


Subject(s)
Bone Marrow Cells/metabolism , Granulocytes/metabolism , Receptors, Nicotinic/metabolism , Animals , Calcium Signaling , Cell Adhesion , Cells, Cultured , Conotoxins/metabolism , Cytotoxicity, Immunologic , Mice , Mice, Inbred BALB C , Neurogenic Inflammation , Pain , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Receptors, Nicotinic/genetics , Sensation
3.
Biomolecules ; 11(1)2020 12 22.
Article in English | MEDLINE | ID: mdl-33374963

ABSTRACT

Lynx1, membrane-bound protein co-localized with the nicotinic acetylcholine receptors (nAChRs) and regulates their function, is a three-finger protein (TFP) made of three ß-structural loops, similarly to snake venom α-neurotoxin TFPs. Since the central loop II of α-neurotoxins is involved in binding to nAChRs, we have recently synthesized the fragments of Lynx1 central loop, including those with the disulfide between Cys residues introduced at N- and C-termini, some of them inhibiting muscle-type nAChR similarly to the whole-size water-soluble Lynx1 (ws-Lynx1). Literature shows that the main fragment interacting with TFPs is the C-loop of both nAChRs and acetylcholine binding proteins (AChBPs) while some ligand-binding capacity is preserved by analogs of this loop, for example, by high-affinity peptide HAP. Here we analyzed the structural organization of these peptide models of ligands and receptors and its role in binding. Thus, fragments of Lynx1 loop II, loop C from the Lymnaea stagnalis AChBP and HAP were synthesized in linear and Cys-cyclized forms and structurally (CD and NMR) and functionally (radioligand assay on Torpedo nAChR) characterized. Connecting the C- and N-termini by disulfide in the ws-Lynx1 fragment stabilized its conformation which became similar to the loop II within the 1H-NMR structure of ws-Lynx1, the activity being higher than for starting linear fragment but lower than for peptide with free cysteines. Introduced disulfides did not considerably change the structure of HAP and of loop C fragments, the former preserving high affinity for α-bungarotoxin, while, surprisingly, no binding was detected with loop C and its analogs.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Bungarotoxins/chemistry , Carrier Proteins/ultrastructure , Receptors, Nicotinic/chemistry , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Binding Sites , Carrier Proteins/chemistry , Humans , Ligands , Lymnaea/chemistry , Lymnaea/genetics , Models, Molecular , Neurotoxins/chemistry , Peptides/chemistry , Protein Binding/genetics , Protein Conformation, beta-Strand , Receptors, Nicotinic/ultrastructure
4.
Mar Drugs ; 18(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272633

ABSTRACT

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3ß2/α6ß2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3ß2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


Subject(s)
Carcinoma, Ehrlich Tumor/drug therapy , Cell Survival/drug effects , Conotoxins/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Nicotinic Antagonists/pharmacology , Animals , Arachidonic Acid/antagonists & inhibitors , Carcinoma/drug therapy , Cobra Neurotoxin Proteins/pharmacology , Drug Synergism , Flavanones/pharmacology , Indomethacin/pharmacology , Masoprocol/pharmacology , Mice , Receptors, Nicotinic
5.
Sci Rep ; 10(1): 3861, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123252

ABSTRACT

Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.


Subject(s)
Bungarotoxins/chemistry , Cobra Neurotoxin Proteins/chemistry , Molecular Dynamics Simulation , Neurotoxins/chemistry , Peptides/chemistry , alpha7 Nicotinic Acetylcholine Receptor/chemistry , Protein Binding , Protein Structure, Secondary
6.
FEBS Lett ; 593(19): 2779-2789, 2019 10.
Article in English | MEDLINE | ID: mdl-31276191

ABSTRACT

Neurotoxins are among the main components of scorpion and snake venoms. Scorpion neurotoxins affect voltage-gated ion channels, while most snake neurotoxins target ligand-gated ion channels, mainly nicotinic acetylcholine receptors (nAChRs). We report that scorpion venoms inhibit α-bungarotoxin binding to both muscle-type nAChR from Torpedo californica and neuronal human α7 nAChR. Toxins inhibiting nAChRs were identified as OSK-1 (α-KTx family) from Orthochirus scrobiculosus and HelaTx1 (κ-KTx family) from Heterometrus laoticus, both being blockers of voltage-gated potassium channels. With an IC50 of 1.6 µm, OSK1 inhibits acetylcholine-induced current through mouse muscle-type nAChR heterologously expressed in Xenopus oocytes. Other well-characterized scorpion toxins from these families also bind to Torpedo nAChR with micromolar affinities. Our results indicate that scorpion neurotoxins present target promiscuity.


Subject(s)
Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/metabolism , Scorpion Venoms/pharmacology , Animals , Mice , Nicotinic Antagonists/chemistry , Nicotinic Antagonists/classification , Protein Binding , Receptors, Nicotinic/chemistry , Scorpion Venoms/chemistry , Scorpion Venoms/classification , Xenopus
7.
Front Pharmacol ; 10: 748, 2019.
Article in English | MEDLINE | ID: mdl-31333465

ABSTRACT

The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.

8.
Future Med Chem ; 10(19): 2309-2322, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30215282

ABSTRACT

AIM: Spider venom is a rich source of antibacterial peptides, whose hemolytic activity is often excessive. METHODOLOGY: How to get rid of it? Using latarcins from Lachesana tarabaevi and oxyopinin Oxt 4a from Oxyopes takobius spider venoms we performed coarse-grained molecular dynamics simulations of these peptides in the presence of lipid bilayers, mimicking erythrocyte membranes. This identified hemolytically active fragments within Oxt 4a and latarcins. Then, we synthesized five 20-residue peptides, containing different parts of the Oxt 4a and latarcin-1 sequence, carrying mutations within the identified regions. CONCLUSION: The antibacterial and hemolytic tests suggested that the three of the synthesized peptides demonstrated substantial decrease in hemolytic activity, retaining, or even exceeding antibacterial potential of the parent peptides.


Subject(s)
Anti-Bacterial Agents/metabolism , Molecular Dynamics Simulation , Peptides/metabolism , Spider Venoms/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Circular Dichroism , Erythrocytes/cytology , Erythrocytes/drug effects , Erythrocytes/metabolism , Escherichia coli/drug effects , Hemolysis/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Microscopy, Confocal , Peptides/chemistry , Peptides/pharmacology , Spiders/metabolism , Staphylococcus aureus/drug effects
9.
Toxins (Basel) ; 10(1)2018 01 07.
Article in English | MEDLINE | ID: mdl-29316656

ABSTRACT

Azemiopsin (Az), a linear peptide from the Azemiops feae viper venom, contains no disulfide bonds, is a high-affinity and selective inhibitor of nicotinic acetylcholine receptor (nAChR) of muscle type and may be considered as potentially applicable nondepolarizing muscle relaxant. In this study, we investigated its preclinical profile in regard to in vitro and in vivo efficacy, acute and chronic toxicity, pharmacokinetics, allergenic capacity, immunotoxicity and mutagenic potency. The peptide effectively inhibited (IC50 ~ 19 nM) calcium response of muscle nAChR evoked by 30 µM (EC100) acetylcholine but was less potent (IC50 ~ 3 µM) at α7 nAChR activated by 10 µM (EC50) acetylcholine and had a low affinity to α4ß2 and α3-containing nAChR, as well as to GABAA or 5HT3 receptors. Its muscle relaxant effect was demonstrated at intramuscular injection to mice at doses of 30-300 µg/kg, 30 µg/kg being the initial effective dose and 90 µg/kg-the average effective dose. The maximal muscle relaxant effect of Az was achieved in 10 min after the administration and elimination half-life of Az in mice was calculated as 20-40 min. The longest period of Az action observed at a dose of 300 µg/kg was 55 min. The highest acute toxicity (LD50 510 µg/kg) was observed at intravenous injection of Az, at intramuscular or intraperitoneal administration it was less toxic. The peptide showed practically no immunotoxic, allergenic or mutagenic capacity. Overall, the results demonstrate that Az has good drug-like properties for the application as local muscle relaxant and in its parameters, is not inferior to the relaxants currently used. However, some Az modification might be effective to extend its narrow therapeutic window, a typical characteristic and a weak point of all nondepolarizing myorelaxants.


Subject(s)
Neuromuscular Agents/pharmacology , Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Viper Venoms/pharmacology , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Female , Humans , Male , Mice, Inbred ICR , Oocytes/drug effects , Oocytes/physiology , Rats, Sprague-Dawley , Receptors, Nicotinic/physiology , Toxicity Tests , Xenopus
10.
Sci Rep ; 6: 36848, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27841338

ABSTRACT

Despite some success for small molecules, elucidating structure-function relationships for biologically active peptides - the ligands for various targets in the organism - remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules' surface as projection maps, which enables the exposure of the structure-function dependencies. Here, we use PST to uncover the "activity pattern" in α-conotoxins - neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by "standard" structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.


Subject(s)
Conotoxins/chemical synthesis , Conotoxins/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Allosteric Site , Animals , Circular Dichroism , Computer Simulation , Conotoxins/chemistry , Conotoxins/genetics , Drug Design , Humans , Molecular Dynamics Simulation , Mutation , Structure-Activity Relationship
11.
Toxicon ; 121: 70-76, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27576061

ABSTRACT

Phospholipase A2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC50 of about 50 µM and 250 µM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC50 of about 3 µM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 µM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC50 of 20.6 ± 3.93 µM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 µM, the value being close to IC50 on α7 nAChR. These data are in accord with non-competitive inhibition as follows from α-bungarotoxin binding experiments. The described peptides are the shortest peptides without disulfide bridges isolated from animal venom and capable to inhibit nAChR by non-competitive way.


Subject(s)
Nicotinic Antagonists/pharmacology , Peptides/pharmacology , Receptors, Nicotinic/drug effects , Viper Venoms/chemistry , Animals , Lymnaea/drug effects , Peptides/chemistry , Peptides/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Viperidae , Xenopus
12.
J Interferon Cytokine Res ; 35(11): 850-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26258404

ABSTRACT

The cationic antimicrobial peptide, LL37, forms electrostatic complexes with DNA (LL37-DNA), which are potent activators of circulating plasmacytoid predendritic cells (ppDCs) and monocytes. However, the effects of LL37-DNA on other immune cell types, such as NK cells, are poorly characterized. In this study, we show that complexes of human genomic DNA (hgDNA) or synthetic double-stranded oligodeoxynucleotides with LL37 strongly enhance natural cytotoxicity of human peripheral blood mononuclear cells (PBMCs) upon an overnight culture, whereas hgDNA alone has no effect, and LL37 alone is moderately active. LL37-DNA complexes potentiate degranulation of, and interferon (IFN)-γ production by, NK cells upon subsequent encounter of K562 target cells. The complexes do not influence percentages of NK cells among PBMCs or the expression of cytotoxic proteins by NK cells. Using neutralizing anticytokine antibodies and immunomagnetic depletion of different subpopulations of PBMCs, we found that the effect of LL37-DNA on NK cells is indirect and mediated by type I IFNs produced by monocytes and, to a lesser extent, by ppDCs. We discuss possible roles of LL37-DNA complexes in the regulation of NK cell functions and in the treatment of cancer.


Subject(s)
Cathelicidins/metabolism , DNA/metabolism , Dendritic Cells/immunology , Interferon Type I/immunology , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Adult , Antimicrobial Cationic Peptides , Cell Degranulation/immunology , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Interferon Type I/biosynthesis , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Lymphocyte Activation/immunology , Middle Aged , Neoplasms/immunology , Real-Time Polymerase Chain Reaction , Young Adult
13.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26221036

ABSTRACT

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Subject(s)
Cobra Neurotoxin Proteins , Conotoxins , Molecular Dynamics Simulation , Receptors, GABA-A/chemistry , Receptors, GABA-A/metabolism , Animals , Binding Sites , Cell Line, Tumor , Cobra Neurotoxin Proteins/chemistry , Cobra Neurotoxin Proteins/pharmacology , Conotoxins/chemistry , Conotoxins/pharmacology , Elapidae , Mice , Protein Structure, Secondary , Receptors, GABA-A/genetics
14.
J Biol Chem ; 287(32): 27079-86, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22613724

ABSTRACT

Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a ß-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 µm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 µm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1ß1εδ) than the fetal form (α1ß1γδ), EC(50) being 0.44 ± 0.1 µm and 1.56 ± 0.37 µm, respectively. The peptide had no effect on GABA(A) (α1ß3γ2 or α2ß3γ2) receptors at a concentration up to 100 µm or on 5-HT(3) receptors at a concentration up to 10 µm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.


Subject(s)
Peptides/pharmacology , Receptors, Nicotinic/metabolism , Viper Venoms/chemistry , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Circular Dichroism , Ligands , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Viper Venoms/metabolism , Viper Venoms/pharmacology
15.
Mar Drugs ; 9(10): 1698-1714, 2011.
Article in English | MEDLINE | ID: mdl-22072993

ABSTRACT

A series of 14 new analogs of α-conotoxin PnIA Conus pennaceus was synthesized and tested for binding to the human α7 nicotinic acetylcholine receptor (nAChR) and acetylcholine-binding proteins (AChBP) Lymnaea stagnalis and Aplysia californica. Based on computer modeling and the X-ray structure of the A. californica AChBP complex with the PnIA[A10L, D14K] analog, single and multiple amino acid substitutions were introduced in α-conotoxin PnIA aimed at compounds of higher affinity and selectivity. Three analogs, PnIA[L5H], PnIA[A10L, D14K] and PnIA[L5R, A10L, D14R], have high affinities for AChBPs or α7 nAChR, as found in competition with radioiodinated α-bungarotoxin. That is why we prepared radioiodinated derivatives of these α-conotoxins, demonstrated their specific binding and found that among the tested synthetic analogs, most had almost 10-fold higher affinity in competition with radioactive α-conotoxins as compared to competition with radioactive α-bungarotoxin. Thus, radioiodinated α-conotoxins are a more sensitive tool for checking the activity of novel α-conotoxins and other compounds quickly dissociating from the receptor complexes.


Subject(s)
Computer-Aided Design , Conotoxins/chemistry , Drug Design , Animals , Aplysia/metabolism , Binding, Competitive , Bungarotoxins/metabolism , Carrier Proteins/drug effects , Carrier Proteins/metabolism , Conotoxins/chemical synthesis , Halogenation , Humans , Lymnaea/metabolism , Protein Binding/drug effects , Radioligand Assay , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
16.
Biochemistry ; 50(18): 3784-95, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21456583

ABSTRACT

The antimicrobial arenicin peptides are cationic amphipathic sequences that strongly interact with membranes. Through a cystine ring closure a cyclic ß-sheet structure is formed in aqueous solution, which persists when interacting with model membranes. In order to investigate the conformation, interactions, dynamics, and topology of their bilayer-associated states, arenicin 1 and 2 were prepared by chemical solid-phase peptide synthesis or by bacterial overexpression, labeled selectively or uniformly with (15)N, reconstituted into oriented membranes, and investigated by proton-decoupled (31)P and (15)N solid-state NMR spectroscopy. Whereas the (31)P NMR spectra indicate that the peptide induces orientational disorder at the level of the phospholipid head groups, the (15)N chemical shift spectra agree well with a regular ß-sheet conformation such as the one observed in micellar environments. In contrast, the data do not fit the twisted ß-sheet structure found in aqueous buffer. Furthermore, the chemical shift distribution is indicative of considerable conformational and/or topological heterogeneity when at the same time the (15)N NMR spectra exclude alignments of the peptide where the ß-sheet lies side ways on the membrane surface. The ensemble of experimental constraints, the amphipathic character of the peptide, and in particular the distribution of the six arginine residues are in agreement with a boatlike dimer structure, similar or related to the one observed in micellar solution, that floats on the membrane surface with the possibility to oligomerize into higher order structures and/or to insert in a transmembrane fashion.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Arginine/chemistry , Computer Simulation , Escherichia coli/metabolism , Helminth Proteins , Lipid Bilayers/chemistry , Lipids/chemistry , Micelles , Peptides/pharmacology , Phospholipids/chemistry , Protein Binding , Protein Conformation , Protein Structure, Secondary , Protons , Recombinant Proteins/chemistry
17.
Anal Bioanal Chem ; 399(10): 3547-54, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21293959

ABSTRACT

Z-scan fluorescence correlation spectroscopy (FCS) is employed to characterize the interaction between arenicin-1 and supported lipid bilayers (SLBs) of different compositions. Lipid analogue C8-BODIPY 500/510C5-HPC and ATTO 465 labelled arenicin-1 are used to detect changes in lipid and peptide diffusion upon addition of unlabelled arenicin-1 to SLBs. Arenicin-1 decreases lipid mobility in negatively charged SLBs. According to diffusion law analysis, microdomains of significantly lower lipid mobility are formed. The analysis of peptide FCS data confirms the presence of microdomains for anionic SLBs. No indications of microdomain formation are detected in SLBs composed purely of zwitterionic lipids. Additionally, our FCS results imply that arenicin-1 exists in the form of oligomers and/or aggregates when interacting with membranes of both compositions.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Spectrometry, Fluorescence/methods , Antimicrobial Cationic Peptides/chemistry , Diffusion , Lipids/chemistry , Models, Biological
18.
J Neurochem ; 111(4): 934-44, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19712060

ABSTRACT

alpha-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. alpha-Conotoxins blocking muscle-type or alpha7 nAChRs compete with alpha-bungarotoxin. However, alpha-conotoxin ImII, a close homolog of the alpha7 nAChR-targeting alpha-conotoxin ImI, blocked alpha7 and muscle nAChRs without displacing alpha-bungarotoxin (Ellison et al. 2003, 2004), suggesting binding at a different site. We synthesized alpha-conotoxin ImII, its ribbon isomer (ImIIiso), 'mutant' ImII(W10Y) and found similar potencies in blocking human alpha7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [(125)I]-alpha-bungarotoxin from human alpha7 nAChRs in the cell line GH(4)C(1) (IC(50) 17 and 23 microM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC(50) 2.0-9.0 microM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized alpha-bungarotoxin (K(d) and IC(50) 2.5-8.2 microM). On Torpedo nAChR, alpha-conotoxin [(125)I]-ImII(W10Y) revealed specific binding (K(d) 1.5-6.1 microM) and could be displaced by alpha-conotoxin ImII, ImIIiso and ImII(W10Y) with IC(50) 2.7, 2.2 and 3.1 microM, respectively. As alpha-cobratoxin and alpha-conotoxin ImI displaced [(125)I]-ImII(W10Y) only at higher concentrations (IC(50)> or = 90 microM), our results indicate that alpha-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.


Subject(s)
Carrier Proteins/metabolism , Conotoxins/chemistry , Conotoxins/metabolism , Receptors, Nicotinic/metabolism , Torpedo/metabolism , Acetylcholine/pharmacology , Amino Acid Sequence , Animals , Aplysia , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Bungarotoxins/metabolism , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Iodine Isotopes/metabolism , Molecular Sequence Data , Oocytes , Radioligand Assay/methods , Receptors, Nicotinic/genetics , Serine Endopeptidases , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Surface Plasmon Resonance/methods , Xenopus laevis , alpha7 Nicotinic Acetylcholine Receptor
19.
Biochem Biophys Res Commun ; 360(1): 156-62, 2007 Aug 17.
Article in English | MEDLINE | ID: mdl-17585874

ABSTRACT

Arenicins are 21-residue cationic antimicrobial peptides, isolated from marine polychaeta Arenicola marina. In order to determine a high-resolution three-dimensional structure of arenicin-2, the recombinant peptide was overexpressed as a fused form in Escherichia coli. Both arenicin isoforms were synthesized using the Fmoc-based solid-phase strategy. Recombinant and synthetic arenicins were purified, and their antimicrobial and spectroscopic properties were analyzed. NMR investigation shows that in water solution arenicin-2 displays a prolonged beta-hairpin, formed by two antiparallel beta-strands and stabilized by one disulfide and nine hydrogen bonds. A significant right-handed twist in the beta-sheet is deprived the peptide surface of amphipathicity. CD spectroscopic analysis indicates that arenicin-2 binds to the SDS and DPC micelles, and conformation of the peptide is significantly changed upon binding. Arenicin strongly binds to anionic lipid (POPE/POPG) vesicles in contrast with zwitterionic (POPC) ones. These results suggest that arenicins are membrane active peptides and point to possible mechanism of their selectivity toward bacterial cells.


Subject(s)
Models, Chemical , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Polychaeta/metabolism , Amino Acid Sequence , Animals , Computer Simulation , Molecular Sequence Data , Peptides/genetics , Peptides/isolation & purification , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure
20.
J Mol Neurosci ; 30(1-2): 77-8, 2006.
Article in English | MEDLINE | ID: mdl-17192636

ABSTRACT

Alpha-conotoxins, neurotoxic peptides from poisonous Conus marine snails, can be subdivided into several groups targeting distinct subtypes of nicotinic acetylcholine receptors (nAChRs). Such alpha-conotoxins as, for example, GI, MI, or SIA potently block muscle-type nAChRs from muscles and from the electric organ of Torpedo ray, whereas others target distinct neuronal nAChRs: alpha-conotoxins ImI and PnIB block pentaoligomeric alpha7 nAChRs, and alpha-conotoxins MII or PnIA inhibit heteromeric nAChRs made of combinations of alpha3 or alpha6 subunits with beta2 subunit. alpha-Conotoxins interact with N-terminal extracellular ligand-binding domains of nAChRs and are indispensable tools for distinguishing various subtypes of AChRs at normal and pathological states. Although many alpha-conotoxins have been isolated from Conus venoms, there is still a great need in more potent and selective tools, which in principle can be obtained by design and synthesis of novel alpha-conotoxin analogs.


Subject(s)
Acetylcholine/metabolism , Conotoxins/pharmacokinetics , Receptors, Nicotinic/metabolism , Animals , Carrier Proteins/metabolism , Neurons/physiology , Torpedo
SELECTION OF CITATIONS
SEARCH DETAIL
...