Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2228, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472188

ABSTRACT

Methanol-to-hydrocarbons (MTH) process has been considered one of the most practical approaches for producing value-added products from methanol. However, the commonly used zeolite catalysts suffer from rapid deactivation due to coke deposition and require regular regeneration treatments. We demonstrate that low-melting-point metals, such as Ga, can effectively promote more stable methanol conversion in the MTH process by slowing coke deposition and facilitating the desorption of carbonaceous species from the zeolite. The ZSM-5 zeolite physically mixed with liquid gallium exhibited an enhanced lifetime in the MTH reaction, which increased by a factor of up to ~14 as compared to the parent ZSM-5. These results suggest an alternative route to the design and preparation of deactivation-resistant zeolite catalysts.

2.
J Am Chem Soc ; 145(40): 22097-22114, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37755328

ABSTRACT

The SWY-type aluminosilicate zeolite, STA-30, has been synthesized via different routes to understand its defect chemistry and solid acidity. The synthetic parameters varied were the gel aging, the Al source, and the organic structure directing agent. All syntheses give crystalline materials with similar Si/Al ratios (6-7) that are stable in the activated K,H-form and closely similar by powder X-ray diffraction. However, they exhibit major differences in the crystal morphology and in their intracrystalline porosity and silanol concentrations. The diDABCO-C82+ (1,1'-(octane-1,8-diyl)bis(1,4-diazabicyclo[2.2.2]octan)-1-ium)-templated STA-30 samples (but not those templated by bisquinuclidinium octane, diQuin-C82+) possess hierarchical microporosity, consisting of noncrystallographic extra-large micropores (13 Å) that connect with the characteristic swy and gme cages of the SWY structure. This results in pore volumes up to 30% greater than those measured in activated diQuin-C8_STA-30 as well as higher concentrations of silanols and fewer Brønsted acid sites (BASs). The hierarchical porosity is demonstrated by isopentane adsorption and the FTIR of adsorbed pyridine, which shows that up to 77% of the BASs are accessible (remarkable for a zeolite that has a small-pore crystal structure). A structural model of single can/d6r column vacancies is proposed for the extra-large micropores, which is revealed unambiguously by high-resolution scanning transmission electron microscopy. STA-30 can therefore be prepared as a hierarchically porous zeolite via direct synthesis. The additional noncrystallographic porosity and, subsequently, the amount of SiOHs in the zeolites can be enhanced or strongly reduced by the choice of crystallization conditions.

3.
Sci Justice ; 62(6): 696-707, 2022 11.
Article in English | MEDLINE | ID: mdl-36400491

ABSTRACT

Online virtual learning resources have been available for learning and teaching in forensic science for some years now, but the recent global COVID-19 related periods of irregular lockdown have necessitated the rapid development of these for teaching, learning and CPD activities. However, these resources do need to be carefully constructed and grounded in pedagogic theory to be effective. This article details eXtended Reality (XR) learning and teaching environments to facilitate effective online teaching and learning for forensic geoscientists. The first two case studies discussed in this article make use of Thinglink software to produce virtual learning and teaching XR resources through an internet system, which was delivered to undergraduate students in 2021. Case one details a range of XR virtual laboratory-based equipment resources, providing a consistent, reliable and asynchronous learning and teaching experience, whilst the second case study presents an XR virtual learning applied geophysics resource developed for a 12-week CPD training programme. This programme involves recorded equipment video resources, accompanying datasets and worksheets for users to work through. Both case studies were positively received by learners, but there were issues encountered by learners with poor internet connections or computer skills, or who do not engage well with online learning. A third case study showcases an XR educational forensic geoscience eGame that was developed to take the user through a cold case search investigation, from desktop study through to field reconnaissance and multi-staged site investigations. Pedagogic research was undertaken with user questionnaires and interviews, providing evidence that the eGame was an effective learning and teaching tool. eGame users highly rated the eGame and reported that they raised awareness and understanding of the use of geophysics equipment and best practice of forensic geoscience search phased investigations. These types of XR virtual learning digital resources, whilst costly to produce in terms of development time and staff resource, provide a complementary virtual learning experience to in-situ practical sessions, and allow learners to asynchronously familiarise themselves with equipment, environments and techniques resulting in more efficient use of in situ time. The XR resources also allow learners to reinforce learning post in-situ sessions. Finally, XR resources can provide a more inclusive and authentic experience for learners who cannot attend or complete work synchronously.


Subject(s)
COVID-19 , Humans , Communicable Disease Control , Learning , Students , Forensic Sciences
4.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210087

ABSTRACT

We report on the development of a simple and cost-effective potentiometric sensor array that is based on manual "drawing" on the polymeric support with the pencils composed of graphite and different types of zeolites. The sensor array demonstrates distinct sensitivity towards a variety of inorganic ions in aqueous media. This multisensor system has been successfully applied to quantitative analysis of 100 real-life surface waters sampled in Mahananda and Hooghly rivers in the West Bengal state (India). Partial least squares regression has been utilized to relate responses of the sensors to the values of different water quality parameters. It has been found that the developed sensor array, or electronic tongue, is capable of quantifying total hardness, total alkalinity, and calcium content in the samples, with the mean relative errors below 18%.


Subject(s)
Electronic Nose , Water Quality , Least-Squares Analysis , Potentiometry , Rivers
5.
J Hazard Mater ; 403: 123951, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264995

ABSTRACT

Exposure to asbestos fibres is related to a number of severe lung diseases, and therefore, rapid, accurate and reliable in situ or on-site asbestos detection in real-life samples is of considerable importance. This work presents a comprehensive investigation of all six types of asbestos by mid-infrared ATR-FTIR, NIR spectroscopy and Raman microspectroscopy. Our studies demonstrate that for practical applications, NIR spectroscopy is potentially the most powerful method for asbestos identification in materials utilised by the construction industry. By focusing on the narrow spectral region, 7300-7000 cm-1 (~1370-1430 nm, overtones of O‒H vibrations), which is highly specific to these materials, and optimising the sensitivity and resolution of the instrumentation, we have been able to discriminate and identify each of the six types of asbestos with the level of detection significantly better than 1 wt%. Furthermore, straightforward computational analysis has allowed for automated objective evaluation of the spectroscopic data.

6.
RSC Adv ; 11(56): 35575-35584, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493138

ABSTRACT

Ketonic decarboxylation has gained significant attention in recent years as a pathway to reduce the oxygen content within biomass-derived oils, and to produce sustainable ketones. The reaction is base catalysed, with MgO an economic, accessible and highly basic heterogeneous catalyst. Here we use MgO to catalyse the ketonic decarboxylation of dodecanoic acid to form 12-tricosanone at moderate temperatures (250 °C, 280 °C and 300 °C) with low catalyst loads of 1% (w/w), 3% (w/w) and 5% (w/w) with respect to the dodecanoic acid, with a reaction time of 1 hour under batch conditions. Three different particle sizes for the MgO were tested (50 nm, 100 nm and 44 µm). Ketone yield was found to increase with increasing reaction temperature, reaching approximately 75% yield for all the samples tested. Temperature was found to be the main control on reaction yield, rather than surface area or particle size.

7.
Nanoscale Adv ; 1(5): 2029-2039, 2019 May 15.
Article in English | MEDLINE | ID: mdl-36134217

ABSTRACT

Zeolites and related crystalline molecular sieves are utilised in a wide range of reactions and processes due to their regular microporous structure, strong acidity, shape selectivity and ion-exchange properties. However, their practical applications can be limited by the small size of the channels and cavities of the microporous structures, and therefore, a great deal of effort has been devoted to enhancing the transport of large-sized molecules in the host pores. Several commercially available zeolites, including faujasite (FAU), mordenite (MOR), beta (BEA), ZSM-5 (MFI) and zeolite L (LTL), have been exposed to a variety of acid and base treatments in the presence of a surfactant (cetyltrimethyl ammonium bromide, CTAB), which led to the controlled introduction of intracrystalline mesoporosity. The detailed characterisation of the obtained mesostructured zeolites has been carried out using FTIR spectroscopy, high resolution TEM, XRD, N2 adsorption, 29Si and 27Al MAS NMR. This work demonstrates a successful application of the supramolecular templating approach for generating tuneable mesoporosity in a range of zeolites possessing 12-membered ring channels, which has been applied to zeolite L for the first time, thus producing hierarchical meso-microporous materials with improved accessibility of active sites and enhanced catalytic performance in dealkylation of tri-isopropylbenzene.

10.
J Phys Chem B ; 115(39): 11318-29, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21863843

ABSTRACT

The micellar state of Pluronic P123, which is a poly(ethylene oxide)-b-poly(propylene oxide)-b- poly(ethylene oxide) block polymer (EO(20)PO(70)EO(20)), has been investigated using SANS, SAXS, and differential scanning calorimetry under the conditions utilized in the synthesis of ordered mesoporous materials, such as SBA-15. The absolute intensity measurements, both with SANS and SAXS, have provided a detailed quantitative description of the P123 micelles in the framework of a simple core-shell spherical model. The model developed has been used to establish the structure of the copolymer micelles, including their size, shape, aggregation number and detailed composition, as well as the structural changes induced by varying reaction conditions. The effects of temperature, pH, acidic source and the addition of swelling agents (toluene and TMB) are reported and discussed.


Subject(s)
Micelles , Neutron Diffraction , Poloxalene/chemistry , Scattering, Small Angle , X-Ray Diffraction , Calorimetry, Differential Scanning , Models, Theoretical , Polyethylene Glycols/chemistry , Porosity , Propylene Glycols/chemistry , Silicon Dioxide/chemistry
11.
J Phys Chem B ; 115(39): 11330-44, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-21863844

ABSTRACT

The different steps of the self-assembly in solution of several 2D-hexagonal silica nanostructured SBA-15 materials have been investigated by SAXS and SANS in situ experiments. Unique quantitative information about the shape and size evolution upon time of the micellar aggregates throughout the self-assembly process is obtained using a complete model that describes well the scattering data for the various synthesis conditions. In all cases, before the precipitation of the material, the micelles shape changes from spherical to rod-like, where the structure of the rod-like micelles is linked to the structure of the 2D-hexagonal precipitated material. In addition, the kinetics of hydrolysis of the inorganic precursor (TEOS) has been determined by in situ Raman spectroscopy. More specifically, by comparing synthesis made with different acids (HNO(3), HBr, HCl, H(2)SO(4), and H(3)PO(4)), it is found that materials prepared using the "salting-out" anions (SO(4)(2-) and H(2)PO(4)(-)) are much better ordered than with the "salting-in" anions (NO(3)(-) and Br(-)).


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Acids/chemistry , Hydrolysis , Kinetics , Micelles , Neutron Diffraction , Poloxalene/chemistry , Scattering, Small Angle , Solutions/chemistry , Spectrum Analysis, Raman , X-Ray Diffraction
12.
Adv Colloid Interface Sci ; 142(1-2): 67-74, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18599009

ABSTRACT

This work presents an overview of the data obtained for SBA-15 synthesis under the reaction conditions using synchrotron based small angle X-ray scattering and small angle neutron scattering. Three major stages in the synthesis of SBA-15 materials proceeding according to the cooperative self-assembly mechanism have been identified, and the structures of the intermediates species have been established. Our in situ time-resolved neutron scattering experiments demonstrate that only spherical micelles of the templating agent are present in the synthesis mixture during the first stage of the reaction. According to the neutron scattering and X-ray scattering data, in the second stage of the reaction the formation of hybrid organic-inorganic micelles is accompanied with the transformation from spherical to cylindrical micelles, which takes place before the precipitation of the ordered SBA-15 phase. During the third stage, these micelles aggregate into a two-dimensional hexagonal structure, confirming that the precipitation takes place as the result of self-assembly of the hybrid cylindrical micelles. As the synthesis proceeds, the voids between the cylinders are filled with the silicate species which undergo condensation reactions resulting in cross-linking and covalent bonding, leading to the formation of highly ordered SBA-15 mesostructure. This work demonstrates that valuable structural information can be obtained from X-ray and neutron scattering characterisation of complex systems containing periodic phases with d-spacing values up to 30 nm, and that both techniques are powerful means for in situ monitoring of the formation of nanostructured materials.


Subject(s)
Silicon Dioxide/chemical synthesis , Kinetics , Neutron Diffraction , Scattering, Small Angle , Silicon Dioxide/chemistry , X-Ray Diffraction
13.
Forensic Sci Int ; 174(1): 16-25, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-17418989

ABSTRACT

The technique of principal component analysis has been applied to the UV-vis spectra of inks obtained from a wide range of black ballpoint pens available in the UK market. Both the pen ink and material extracted from the ink line on paper have been examined. Here, principal component analysis characterised each spectrum within a group through the numerical loadings attached to the first few principal components. Analysis of the spectra from multiple measurements on the same brand of pen showed excellent reproducibility and clear discrimination between inks that was supported by statistical analysis. Indeed it was possible to discriminate between the pen ink and the ink line from all brands examined in this way, suggesting that the solvent extraction process may have an influence on these results. For the complete set of 25 pens, interpretation of the loadings for the first few principal components showed that both the pen inks and the extracted ink lines may be classified in an objective manner and in agreement with the results of parallel thin layer chromatography studies. Within each class almost all inks could be individualised. Further work has shown that principal component analysis may be used to identify a particular ink from a database of reference UV-vis spectra and a strategy for developing this approach is suggested.

14.
Chem Commun (Camb) ; (8): 834-6, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17308647

ABSTRACT

Time-resolved in situ SANS investigations have provided direct experimental evidence for the three initial steps in the formation of the SBA-15 mesoporous material: an induction period is followed by a shape transformation of the micelles from spherical to cylindrical ones followed by the precipitation of a two-dimensional hexagonal phase.


Subject(s)
Silicon Dioxide/chemistry , Electron Spin Resonance Spectroscopy , Indicators and Reagents , Magnetic Resonance Spectroscopy , Micelles , Microscopy, Electron, Transmission , Molecular Conformation , Molecular Weight , Neutrons , Scattering, Radiation , Spectrophotometry, Infrared , X-Rays
15.
J Phys Chem B ; 109(48): 22780-90, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16853968

ABSTRACT

The initial stages of SBA-15 synthesis have been studied by using in situ time-resolved small-angle X-ray scattering with a synchrotron radiation source. The quantitative analysis of X-ray scattering and diffraction intensities allows the structures of intermediates to be identified at the different stages of SBA-15 synthesis. Following tetraethylorthosilicate (TEOS) addition, an intense small-angle scattering and an associated secondary maximum are observed, which are attributed to non-interacting surfactant template micelles encrusted with silicate species. After 25-30 min of the reaction, the broad scattering disappears and narrow Bragg diffraction peaks typical of hexagonally ordered structure are observed. The cylindrical micelles identified from X-ray scattering data appear to be the direct precursors of 2D hexagonal SBA-15 structure. Just after the formation of the SBA-15 hexagonal phase, the cylindrical micelles are only weakly linked in the hexagonal structure. As the synthesis proceeds, the solvent in the void volume between the cylindrical micelles is gradually replaced by more dense silicate species. The unit cell parameter of SBA-15 is progressively decreasing during the SBA-15 synthesis, which can be related to the condensation and densification of silicate fragments in the spaces between the cylinders. The volume fraction of the 2D hexagonally ordered phase is sharply growing during the first 2 h of the reaction. The inner core radius of SBA-15 material remains almost constant during the whole synthesis and is principally affected by the size of the poly(propylene oxide) inner core in the original cylindrical micelles.


Subject(s)
Scattering, Small Angle , Silicon Dioxide/chemistry , Silicon Dioxide/chemical synthesis , X-Ray Diffraction , Computational Biology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...