Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 33(12): 4387-92, 2012 Dec.
Article in Chinese | MEDLINE | ID: mdl-23379169

ABSTRACT

The aims of this study are to further investigate the impact mechanism of nitrate on the simultaneous methanogenesis and denitrification (SMD) process of anaerobic biofilm, and to extend the application of the biofilm process in the treatment of high nitrogen and COD concentration organic wastewater. The SMD reactions were successfully carried out in a hybrid anaerobic biofilm and sludge reactor (HABSR) and an up-flow anaerobic sludge blanket (UASB), and the influence of nitrate on the performance of simultaneous carbon and nitrogen removal in biofilm and granular sludge were investigated using batch tests. The results showed that the nitrate concentration could obviously affect the carbon and nitrogen removal in both biofilm and granular sludge, and the increase of nitrate concentration had more serious impact on the granular sludge, and the biofilm presented higher COD and nitrogen removal efficiency and stronger resistance to toxic materials than the granular sludge. As the nitrate concentration was increased from 75 to 600 mg x L(-1), the COD removal rates were reduced from 273.26 to 0.1 mg x (h x g)(-1) in granular sludge and reduced from 95 to 1.7 mg x (h x g)(-1) in biofilm. At the same time, the denitrification rate of biofilm and granular sludge were increased form 21.43 and 22.31 mg x (h x g)(-1) to 83.72 and 61.06 mg x (h x g)(-1), respectively. The biofilm recovered the COD degradation rate more quickly and easily than the granular sludge, and the maximum COD removal rate reached 712.44 mg x (h x g)(-1). The nitrite accumulation was observed to be the major cause that affected the simultaneous carbon and nitrogen removal of biofilm and granular sludge. It's found that the maximum nitrite accumulation in biofilm was only one tenth of that of the granular sludge at the same nitrate concentration. The HABSR was proved to be an important alternative for SMD reaction employed in the treatment of high nitrogen and COD concentration organic wastewater.


Subject(s)
Denitrification , Nitrates/isolation & purification , Sewage/microbiology , Waste Disposal, Fluid/methods , Anaerobiosis , Biofilms , Bioreactors/microbiology , Methane/biosynthesis , Nitrates/chemistry , Particle Size , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...