Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 92(6): 1552-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23687151

ABSTRACT

Riemerella anatipestifer (RA) is one of the most important pathogens of 1- to 8-wk-old ducklings that severely affects the development of the duck industry in China. Every year, antibiotic medicines including tetracycline and doxycycline are used in the duck industry. Few reports compare the expression of multidrug-resistant genes in RA before and after addition of chemical drugs. With this in mind, the direct effects of gradient concentration of tetracyclines on the expression of tetracycline resistance genes (TETr) in RA at the cDNA level were studied by using a quantitative real-time PCR method. The expression of TETr, tetA, tetC, and tetM was investigated in ATCC11845 and in 30 RA isolated from different samples. Using a range of doxycycline concentrations up to 50% of the minimum inhibitory concentration (MIC), the optimal induction concentration of 0.0625 µg/mL was selected. Under the optimal inducible expression, concentrations of TETr, tetC, and tetM cDNA were detected in all isolates, and the highest mRNA expression level of TETr genes was shown. Additionally, the expression levels of 3 TETr genes in RA14 (tetA and tetC) and RA17 (tetM and tetC) were compared. Both tetC and tetA found in isolate RA14 was found to express both tetC and tetA, and tetC cDNA was detected in isolate RA17 at all doxycycline concentrations tested, whereas tetM cDNA was not detected at any concentration. We can conclude that resistance pump is the main mechanism of tetracycline antibiotic resistance, and under the action of drug resistance pump tetC, the expression of tetM was not activated in RA17. These data suggest that the mRNA expression level of TETr genes was correlated with the MIC values, indicating that the degree of drug resistance is determined by the expression levels of TETr genes. Also, the induction of TETr is the major tetracycline resistance mechanism in RA, especially the resistance pump. However, lower concentrations of doxycycline induced higher TETr expression, and higher concentrations inhibited TETr expression. Maybe that is the reason for selection mutation to make tolerated bacteria survive.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Real-Time Polymerase Chain Reaction/methods , Riemerella/drug effects , Riemerella/metabolism , Tetracycline Resistance/genetics , Tetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Riemerella/genetics , Sensitivity and Specificity
2.
Avian Dis ; 53(4): 601-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20095163

ABSTRACT

Kirby-Bauer tests were used to analyze the antibiotic resistance of 224 isolates of Riemerella anatipestifer isolated between 1998 and 2005. Among the 36 antibiotics tested, 50% of the analyzed isolates were resistant to ampicillin, ceftazidime, aztreonam, cefazolin, cefepime, cefuroxime, oxacillin, penicillin G, rifampin, and trimethoprim/sulfamethoxazole. Higher levels of resistance were detected for aztreonam, cefepime, oxacillin, penicillin G, ceftazidime, and trimethoprim/sulfamethoxazole (87.8%, 64.3%, 88.6%, 86.9%, 75.9%, and 79.2% resistance, respectively). The lowest resistance rates were observed for amikacin (9.5%), cefoperazone (7.2%), imipenem (3.2%), and neomycin (9.5%). Four isolates were found to be resistant to 29 different antimicrobials. Riemerella anatipestifer drug resistance profiles changed over time, and the only consistent patterns observed were the resistance of R. anatipestifer to cefoperazone, piperacillin, spectinomycin, and aztreonam. In addition to determining the antibiotic-resistance profiles of R. anatipestifer isolates, we also examine the therapeutic efficacy of these antibiotics against lethal R. anatipestifer infection in ducks in vivo. According to these data, we have extrapolated an antibiotic treatment approach for veterinarians attending flocks of ducks. These data suggest that disk-diffusion analyses can be extrapolated to predict in vivo efficacy, thereby facilitating the identification of effective antibacterial treatments and potentially diminishing the irresponsible use of antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Ducks , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/veterinary , Poultry Diseases/microbiology , Animals , China/epidemiology , Gram-Negative Bacterial Infections/microbiology , Poultry Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...