Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 128: 110260, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32447213

ABSTRACT

Melatonin is a pineal-produced indole known for its anti-aging, antiapoptotic and antioxidant properties. In past decades, the protective potentials of melatonin for cardiovascular diseases, such as atherosclerosis and myocardial infarction, have been widely revealed, triggering more investigations focused on other cardioprotective effects of melatonin. Recently, the roles of melatonin in diabetic cardiomyopathy (DCM) have attracted increased attention. In this regard, researchers found that melatonin attenuated cardiac fibrosis and hypertrophy, thus interrupting the development of DCM. Retinoid-related orphan receptor α is a key melatonin receptor that contributed to the cardioprotective effect of melatonin in hearts with DCM. For the downstream mechanisms, the inhibition of mammalian STE20-like kinase 1 plays a pivotal role, which exerts antiapoptotic and proautophagic effects, thus enhancing cardiac tolerance in high-glucose conditions. In addition, other signalling mechanisms, such as sirtuin-1/peroxisome proliferator-activated receptor gamma-coactivator alpha and endoplasmic reticulum-related signalling, are also involved in the protective effects of melatonin on cardiomyocytes under diabetic conditions. This review will focus on the protective signalling mechanisms regulated by melatonin and provide a better understanding of the therapeutic applications of melatonin signalling in DCM.


Subject(s)
Cardiovascular Agents/therapeutic use , Diabetic Cardiomyopathies/prevention & control , Heart/drug effects , Melatonin/therapeutic use , Myocardium , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Heart/physiopathology , Humans , Melatonin/metabolism , Myocardium/metabolism , Myocardium/pathology , Signal Transduction
2.
Oxid Med Cell Longev ; 2020: 7051845, 2020.
Article in English | MEDLINE | ID: mdl-32256959

ABSTRACT

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetic mellitus that is characterized by diastolic disorder in the early stage and clinical heart failure in the later stage. Presently, DCM is considered one of the major causes of death in diabetic patients. Resveratrol (RSV), a naturally occurring stilbene, is widely reported as a cardioprotective substance in many heart diseases. Thus far, the specific roles of RSV in DCM prevention and treatment have attracted great attention. Here, we discuss the roles of RSV in DCM by focusing its downstream targets from both in vivo and in vitro studies. Among such targets, Sirtuins 1/3 and AMP-activated kinase have been identified as key mediators that induce cardioprotection during hyperglycemia. In addition, many other signaling molecules (e.g., forkhead box-O3a and extracellular regulated protein kinases) are also regulated in the presence of RSV and exert beneficial effects such as opposing oxidative stress, inflammation, and apoptosis in cardiomyocytes exposed to high-glucose conditions. The beneficial potential of an RSV/stem cell cotherapy is also reviewed as a promising therapeutic strategy for preventing the development of DCM.


Subject(s)
Antioxidants/therapeutic use , Diabetic Cardiomyopathies/diet therapy , Resveratrol/therapeutic use , Signal Transduction/drug effects , Antioxidants/pharmacology , Humans , Resveratrol/pharmacology
3.
J Cell Physiol ; 234(2): 1190-1207, 2019 02.
Article in English | MEDLINE | ID: mdl-30132875

ABSTRACT

Acute myocardial infarction is a major cause of death worldwide. The most important therapy for limiting ischemic injury and infarct size is timely and efficient myocardial reperfusion treatment, which may instead induce cardiomyocyte necrosis due to myocardial ischemia-reperfusion (I/R) injury. Heat shock protein 70 (HSP70), a stress-inducible protein, is overexpressed during myocardial I/R. The induced HSP70 is shown to regulate several intracellular proteins (e.g., transcription factors, enzymes, and apoptosis-related proteins) and signaling pathways (e.g., c-Jun N-terminal kinase pathway and extracellular-signal-regulated kinase 1/2 pathway), forming a complicated network that contributes to reducing reactive oxygen species accumulation, improving calcium homeostasis, inhibiting cellular apoptosis, thereby enhancing the stress adaption of myocardium to I/R injury. In addition, the extracellular HSP70, which is released from injured cardiomyocytes during I/R, acts as a proinflammatory mediator that results in cell death, while the intracellular HSP70 exerts antiinflammatory effects by suppressing proinflammatory signaling pathways. Notably, HSP70 is induced and contributes to the cardioprotection in several types of preconditioning and postconditioning. Meanwhile, it is shown that the cardioprotective effectiveness of preconditioning-induced HSP70 (e.g., hyperthermia preconditioning-induced HSP70) can be impaired by certain pathological conditions, such as hyperlipidemia and hyperglycemia. Thus, we highlight the widespread cardioprotective involvement of HSP70 in preconditioning and postconditioning and elucidate how HSP70-mediated cardioprotection is impaired in these pathological conditions. Furthermore, several therapeutic potentials of HSP70 against myocardial I/R injury and potential directions for future studies are also provided in this review.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Ischemic Postconditioning/methods , Ischemic Preconditioning/methods , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/metabolism , Animals , Cardiovascular Agents/therapeutic use , Cytoprotection , HSP70 Heat-Shock Proteins/agonists , Humans , Molecular Targeted Therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction , Treatment Outcome , Up-Regulation
4.
J Cardiovasc Pharmacol Ther ; 23(1): 46-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28466688

ABSTRACT

Myocardial infarction (MI) is a serious cardiovascular disease resulting in high rates of morbidity and mortality. Although advances have been made in restoring myocardial perfusion in ischemic areas, decreases in cardiomyocyte death and infarct size are still limited, attributing to myocardial ischemia/reperfusion (I/R) injury. It is necessary to develop therapies to restrict myocardial I/R injury and protect cardiomyocytes against further damage after MI. Many studies have suggested that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-inducible nuclear receptor that predominantly regulates glucose and lipid metabolism, is a promising therapeutic target for ameliorating myocardial I/R injury. Thus, this review focuses on the role of PPARγ in cardioprotection during myocardial I/R. The cardioprotective effects of PPARγ, including attenuating oxidative stress, inhibiting inflammatory responses, improving glucose and lipid metabolism, and antagonizing apoptosis, are described. Additionally, the underlying mechanisms of cardioprotective effects of PPARγ, such as regulating the expression of target genes, influencing other transcription factors, and modulating kinase signaling pathways, are further discussed.


Subject(s)
Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/physiopathology , PPAR gamma/metabolism , Animals , Apoptosis/physiology , Humans , Myocardial Infarction/therapy , Myocardial Reperfusion Injury/therapy , Myocytes, Cardiac/pathology , Oxidative Stress/physiology , Signal Transduction/physiology
5.
Neurosci Bull ; 33(5): 483-492, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28924920

ABSTRACT

The enteric nervous system (ENS) controls the function of the gastrointestinal tract and has been implicated in various diseases, including Parkinson's disease (PD). PD is a neurodegenerative disease with Lewy bodies (LBs) and Lewy neurites (LNs) as the main pathological features. In addition to the typical motor symptoms in PD, attention has been drawn to non-motor symptoms, such as constipation, implying dysfunction of the ENS. In the present study, we characterized the age-dependent morphological alterations and aggregation of α-synuclein (α-syn), the primary protein component in LBs and LNs, in the ENS in an α-syn transgenic mouse model. We found that the expression and accumulation of α-syn increased gradually in neurons of Meissner's and Auerbach's plexuses of the gastrointestinal tract with age (from 1 week to 2 years). In addition, α-syn was increasingly phosphorylated at the serine 129 residue, reflecting pathological alterations of the protein over time. Furthermore, α-syn was present in different subtypes of neurons expressing vasoactive intestinal polypeptide, neuronal nitric oxide synthase, or calretinin. The results indicated that BAC-α-Syn-GFP transgenic mice provide a unique model in which to study the relationship between ENS and PD pathogenesis.


Subject(s)
Disease Models, Animal , Enteric Nervous System/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Age Factors , Animals , Mice , Mice, Transgenic , Neurons/metabolism , Phosphorylation , alpha-Synuclein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...