Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(8): 3587-3592, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38372205

ABSTRACT

Sensitive detection of resistance mutation T790 M is of great significance for early diagnosis and prognostic monitoring of non-small-cell lung cancer (NSCLC). In this paper, we showed a highly sensitive detection strategy for T790 M using a three-level characteristic current signal pattern in an α-hemolysin nanopore. A probe was designed that formed a C-T mismatched base pair with wild-type/P and a T-T mismatched with the T790M/P. The T790M/P produced a unique three-level characteristic current signal in the presence of mercury ions(II): first, T790M-Hg2+-P entering the vestibule of α-HL under the transmembrane potential and overhang of probe occupying the ß-barrel, then probe unzipping from the T790M/P, T790 M temporally residing inside the nanocavity due to the interaction with Hg(II), and finally T790 M passing through the ß-barrel. The blocking current distribution was concentrated with a small relative standard deviation of about 3%, and the signal peaks of T790 M and wild-type can be completely separated with a high separation resolution of more than 2.5, which achieved the highly sensitive detection of T790 M down to 0.001 pM (confidence level P 95%) with a linear range from 0.001 pM to 1 nM in human serum samples. This highly sensitive recognition strategy enables the detection of low abundance T790 M and provides a method for prognostic monitoring in NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mercury , Nanopores , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Thymine , Hemolysin Proteins/genetics , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...